Skip to main content

An Improved Compression Technique for Signatures Based on Learning with Errors

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8366))

Abstract

We present a new approach to the compression technique of Lyubashevsky et al. [17,13] for lattice-based signatures based on learning with errors (LWE). Our ideas seem to be particularly suitable for signature schemes whose security, in the random oracle model, is based on standard worst-case computational assumptions. Our signatures are shorter than any previous proposal for provably-secure signatures based on standard lattice problems: at the 128-bit level we improve signature size from (more than) 16500 bits to around 9000 to 12000 bits.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht, M.R., Fitzpatrick, R., Göpfert, F.: On the Efficacy of Solving LWE by Reduction to Unique-SVP. To appear Proceedings of International Conference on Information Security and Cryptology (2013)

    Google Scholar 

  2. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast Cryptographic Primitives and Circular-Secure Encryption Based on Hard Learning Problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Bellare, M., Neven, G.: Multi-Signatures in the Plain Public-Key Model and a General Forking Lemma. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM CCS 2006, pp. 390–399. ACM (2006)

    Google Scholar 

  4. Biswas, B., Sendrier, N.: McEliece Cryptosystem Implementation: Theory and Practice. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 47–62. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Böhl, F., Hofheinz, D., Jager, T., Koch, J., Seo, J.H., Striecks, C.: Practical Signatures From Standard Assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 461–485. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Boyen, X.: Lattice Mixing and Vanishing Trapdoors – A Framework for Fully Secure Short Signatures and More. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical Hardness of Learning with Errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) STOC 2013, pp. 575–584. ACM (2013)

    Google Scholar 

  8. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better Lattice Security Estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice Signatures and Bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Devroye, L.: Non-Uniform Random Variate Generation. Springer, New York (1986)

    Google Scholar 

  11. Galbraith, S.D.: Space-efficient variants of cryptosystems based on learning with errors (2013) (preprint)

    Google Scholar 

  12. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for Hard Lattices and New Cryptographic Constructions. In: Dwork, C. (ed.) STOC 2008, pp. 197–206. ACM (2008)

    Google Scholar 

  13. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical Lattice-Based Cryptography: A Signature Scheme for Embedded Systems. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Liu, M., Nguyen, P.Q.: Solving BDD by Enumeration, An Update. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Lyubashevsky, V.: Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based Signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Lyubashevsky, V., Micciancio, D.: On Bounded Distance Decoding, Unique Shortest Vectors, and the Minimum Distance Problem. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 577–594. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  17. Lyubashevsky, V.: Lattice Signatures without Trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: A cryptographic Perspective. Kluwer (2002)

    Google Scholar 

  19. Micciancio, D., Regev, O.: Lattice-Based Cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post Quantum Cryptography, pp. 147–191. Springer (2009)

    Google Scholar 

  20. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with Small Parameters. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 21–39. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind Signatures. J. Cryptology 13, 361–396 (2000)

    Article  MATH  Google Scholar 

  22. Stehlé, D., Steinfeld, R.: Making NTRUEncrypt and NTRUSign as Secure as Standard Worst-Case Problems over Ideal Lattices, Cryptology ePrint Archive: Report 2013/004 (2013)

    Google Scholar 

  23. Regev, O.: On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. In: Gabow, H.N., Fagin, R. (eds.) STOC 2005, pp. 84–93. ACM (2005)

    Google Scholar 

  24. Regev, O.: On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. Journal of the ACM 56(6), article 34 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bai, S., Galbraith, S.D. (2014). An Improved Compression Technique for Signatures Based on Learning with Errors. In: Benaloh, J. (eds) Topics in Cryptology – CT-RSA 2014. CT-RSA 2014. Lecture Notes in Computer Science, vol 8366. Springer, Cham. https://doi.org/10.1007/978-3-319-04852-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04852-9_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04851-2

  • Online ISBN: 978-3-319-04852-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics