Skip to main content

Modern Applied Mathematics for Alternative Modeling of the Atmospheric Effects on Satellite Images

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 73))

Abstract

Nonparametric regression and classification techniques are mostly the key data mining tools in explaining real life problems and natural phenomena where many effects often exhibit nonlinear behavior. The remotely sensed earth data collected by earth-observing satellites is degraded due to the absorption and scattering of solar radiation by atmospheric gases and aerosols. In order to use these data for information extraction, they must first be corrected for the atmospheric effects. Recent methods based on radiative transfer modelling still have many challenges including achieving high accuracy and developing real-time processing capability of large numbers of satellite images acquired with high temporal resolution and Large Field of View instruments. In this chapter, two state-of-the-art nonparametric tools, Multivariate Adaptive Regression Splines (MARS) and its successor Conic Multivariate Adaptive Regression Splines (CMARS), are reviewed within the frame of an earth science example. Both methods are utilized for the atmospheric correction of five sets of MODIS images taken over European Alps. The Simplified Method for Atmospheric Correction (SMAC), a simplified version of 6S radiative transfer model, is also applied on the image data sets for the removal of atmospheric effects. The performance of the models was evaluated by comparing their results with the MODIS atmospherically corrected surface reflectance product in terms of RMSE. Although MARS and CMARS approaches produce similar results on the data sets, they both outperform SMAC.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. ACORN 4.0: User’s Guide Stand-alone Version, Version 4.0, Analytical Imaging and Geophysics LLC (Jan 2002)

    Google Scholar 

  2. Alp, Ö.S., Büyükbebeci, E., Çekiç, A.İ., Özkurt, F.Y., Taylan, P., Weber G.-W.: CMARS and GAM & CQP-Modern optimization methods applied to international credit default prediction. J. Comput. Appl. Math. 235, 4639–4651 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Anderson, G.P., Pukall, B., Allred, C.L., Jeong, L.S., Hoke, M., Chetwynd, J.H., Adler-Golden, S.M., Berk, A., Bernstein, L.S., Richtsmeier, S.C., Acharya, P.K., Matthew, M.W.: FLAASH and MODTRAN4: state-of-the-art atmospheric correction for hyperspectral data. IEEE Aerosp. Conf. Proc. 4, 177–181 (1999)

    Google Scholar 

  4. Balshi, M.S., McGuire, A.D., Duffis, P., Flannigan, M., Walsh, J., and Melillo, J.: Assessing the response of area burned to changing climate in western boreal North America using a multivariate adaptive regression splines (MARS) approach. Glob. Chang. Biol. 15, 578–600 (2009)

    Article  Google Scholar 

  5. Banks, D.L., Olszewski, R.T., Maxion, R.A.: Comparing methods for multivariate nonparametric regression. Commun. Stat. Simul. Comput. 32, 541–571 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ben-Ari, E.N., Steinberg, D.M.: Modeling data from computer experiments: an empirical comparison of kriging with MARS and projection pursuit regression. Qual. Eng. 19, 327–338 (2007)

    Article  Google Scholar 

  7. Berk, A., Bernstein, L.S., Anderson, G.P., Acharya, P.K., Robertson, D.C., Chetwynd, J.H., Adler-Golden, S.M.: MODTRAN cloud and multiple scattering upgrades with application to AVIRIS. Remote Sens. Environ. 65, 367–375 (1998)

    Article  Google Scholar 

  8. Bernstein, L., Adler-Golden, S., Sundberg, R., Levine, R., Perkins, T., Berk, A., Ratkowski, A.J., Felde, F., Hoke, M.L.: A new method for atmospheric correction and aerosol optical property retrieval for VISSWIR multi-and hyperspectral imaging sensors: QUAC (QUick Atmospheric Correction). In: Proceedings of IGARSS 2005, 25th International Geoscience and Remote Sensing Symposium, Seoul, 25–29 July 2005. ISBN: 0-7803-9050-4

    Google Scholar 

  9. Briand, L.C., Freimut, B., Vollei, F.: Using multiple adaptive regression splines to support decision making in code inspections. J. Syst. Softw. 73, 205–217 (2004)

    Article  Google Scholar 

  10. Cherkassky, V., Mulier, F.: Learning from Data: Concepts, Theory, and Methods, 2nd ed. Wiley, Hoboken (2007)

    Book  Google Scholar 

  11. Chou, S.M., Lee, T.S., Shao, Y.E., Chen, I.F.: Mining the breast cancer pattern using artificial neural networks and multivariate adaptive regression splines. Expert Syst. Appl. 27, 133–142 (2004)

    Article  Google Scholar 

  12. Cook, N.R., Zee, R.Y.L., Ridker, P.M.: Tree and spline based association analysis of gene-gene interaction models for ischemic stroke. Stat. Med. 23, 1439–1453 (2004)

    Article  Google Scholar 

  13. Deichmann, J., Esghi, A., Haughton, D., Sayek, S., Teebagy, N.: Application of multiple adaptive regression splines (MARS) in direct response modelling. J. Interact. Mark. 16, 15–27 (2002)

    Article  Google Scholar 

  14. Durmaz, M., Karslıoğlu, M.O.: Non-parametric regional VTEC modeling with multivariate adaptive regression B-Splines. Adv. Space Res. 48, 1523–1530 (2011)

    Article  Google Scholar 

  15. Durmaz, M., Karslıoğlu, M.O., Nohutcu, M.: Regional VTEC modeling with multivariate adaptive regression splines. Adv. Space Res. 46, 180–189 (2010)

    Article  Google Scholar 

  16. Felicísimo, A.M., G omez, A., Muñoz, J., Schnabel, S., Gonçalves, A.: Potential distribution of forest species in dehesas of extremadura (Spain). In: Schnabel, S., Gonçalves, S. (eds.) Sustainability of Agrosilvopastoral Systems: Dehesa Montados, vol. 37, pp. 231–246. Catena Verlag, Reiskirchen (2005)

    Google Scholar 

  17. Friedman, J.H.: Multivariate adaptive regression splines. Ann. Stat. 19, 1–141 (1991)

    Article  MATH  Google Scholar 

  18. Friedman, J.H.: Fast MARS. Technical Report No. 110, Laboratuary for Computational Statistics, Department of Statistics, Stanford University (May 1993)

    Google Scholar 

  19. Gao, B., Montes, M.J., Davis, C.O., Goetz, A.F.H.: Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean. Remote Sens. Environ. 113, S17–S24 (2009)

    Article  Google Scholar 

  20. Guitérrez, A.G., Schnabel, S., Contador, J.F.L.: Using and comparing two nonparametric methods (CART and MARS) to model the potential distribution of gullies. Ecol. Model. 220, 3630–3637 (2009)

    Article  Google Scholar 

  21. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer, New York (2009)

    Book  Google Scholar 

  22. Heikkinen, R.K., Luoto, M., Kuussaari, M., Toivonen, T.: Modelling the spatial distribution of a threatened butterfly: impacts of scale and statistical technique. Landsc. Urban Plan. 79, 347–357 (2007)

    Article  Google Scholar 

  23. Henne, P.D., Hu, F.S., Cleland, D.T.: Lake-effect snow as the dominant control of mesic-forest distribution in Michigan, USA. J. Ecol. 95, 517–529 (2007)

    Article  Google Scholar 

  24. Herman, B.M., Browning, S.R.: The effect of aerosols on the Earth-atmosphere albedo. J. Atmos. Sci. 32, 1430–1445 (1975)

    Article  Google Scholar 

  25. Jekabsons, G.: Adaptive basis function construction: an approach for adaptive building of sparse polynomial regression models. In: Zhang, Y. (ed.) Machine Learning. In-Tech, Croatia (2010)

    Google Scholar 

  26. Kotchenova, S.Y., Vermote, E.F.: Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data: part II: homogeneous lambertian and anisotropic surfaces. Appl. Opt. 46, 4455–4464 (2007)

    Article  Google Scholar 

  27. Kotchenova, S.Y., Vermote, E.F., Matarrese, R., Klemm, F.M.: Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data: part I: path radiance. Appl. Opt. 45, 6762–6774 (2006)

    Article  Google Scholar 

  28. Krzyścin, J.W., Eerme, K., Janouch, M.: Long-term variations of the UV-B radiation over Central Europe as derived from the reconstructed UV time series. Ann. Geophysicae 22, 1473–1485 (2004)

    Article  Google Scholar 

  29. Leathwick, J.R., Rowe, D., Richardson, J., Elith, J., Hastie, T.: Using multivariate adaptive regression splines to predict the distributions of New Zealands freshwater diadromous fish. Freshw. Biol. 50, 2034–2052 (2005)

    Article  Google Scholar 

  30. Leathwick, J.R., Elith, J., Hastie, T.: Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecol. Model. 199, 188–196 (2006)

    Article  Google Scholar 

  31. Lee, T., Chiu, C., Chou, Y., Lu, C.: Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Comput. Stat. Data Anal. 50, 1113–1130 (2006)

    Article  MathSciNet  Google Scholar 

  32. Lhermitte, S., Verbesselt, J., Verstraeten, W.W., Coppin, P.: A comparison of time series similarity measures for classification and change detection of ecosystem dynamics. Remote Sens. Environ. 115, 3129–3152 (2011)

    Article  Google Scholar 

  33. MARS®;: Salford Systems (software available at http://www.salfordsystems.com)

  34. Matthew, M., Adler-Golden, S., Berk, A., Felde, G., Anderson, G., Gorodetzky, D., Paswaters, S., Shippert, M.: Atmospheric correction of spectral imagery: evaluation of the FLAASH algorithm with AVIRIS data. Proc. SPIE 5093, 474–482 (2003)

    Article  Google Scholar 

  35. MOSEKTM: (software available at http://www.mosek.com)

  36. Mukhopadhyay, A., Iqbal, A.: Prediction of mechanical property of steel strips using multivariate adaptive regression splines. J. Appl. Stat. 36, 1–9 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  37. Muñoz, J., Felicísimo, A.M.: Comparison of statistical methods commonly used in predictive modeling. J. Veg. Sci. 15, 285–292 (2004)

    Article  Google Scholar 

  38. Nikolakopoulos, K.G., Vaiopoulos, D.A., Skianis, G.A.: A comparative study of different atmospheric correction algorithms over an area with complex geomorphology in Western Peloponnese, Greece. In: Proceedings of International Geoscience and Remote Sensing Symposium, 2002 (IGARSS’02), vol. 4, Toronto, 24–28 June 2002, pp. 2492–2494. IEEE (2002)

    Google Scholar 

  39. Osei-Bryson, K.M., Ko, M.: Exploring the relationship between information technology investments and firm performance using regression splines analysis. Inform. Manag. 42, 1–13 (2004)

    Article  Google Scholar 

  40. Özmen, A.: Robust conic quadratic programming applied to quality improvement: a robustification of CMARS, M.Sc. thesis, Middle East Technical University (2010)

    Google Scholar 

  41. Özmen, A., Weber, G.-W., Batmaz, İ., Kropat, E.: RCMARS: Robustification of CMARS with different scenarios under polyhedral uncertainty set. Commun. Nonlin. Sci. Numer. Simulat. 16, 4780–4787 (2011)

    Article  MATH  Google Scholar 

  42. Permuter, H., Francos, J., Jermyn, I.: A study of Gaussian mixture models of color and texture features for image classification and segmentation. Pattern Recognit. 39, 695–706 (2006)

    Article  MATH  Google Scholar 

  43. Pouteau, R., Rambal, S., Ratte, J.P., Gogé F., Joffre, R., Winkel, T.: Downscaling MODIS-derived maps using GIS and boosted regression trees: the case of frost occurrence over the arid Andean highlands of Bolivia. Remote Sens. Environ. 115, 117–129 (2011)

    Article  Google Scholar 

  44. Prasad, A.M., Iverson, L.R., Liaw, A.: Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9, 181–199 (2006)

    Article  Google Scholar 

  45. Proud, S.R., Fensholt, R., Rasmussen, M.O., Sandholt, I.: A comparison of the effectiveness of 6S and SMAC in correcting for atmospheric interference of meteosat second generation images. J. Geophysical Res. 115 (2010). doi:10.1029/2009JD013693

    Google Scholar 

  46. Proud, S.R., Rasmussen, M.O., Fensholt, R., Sandholt, I., Shisanya, C., Mutero, W., Mbow, C., Anyamba, A.: Improving the SMAC atmospheric correction code by analysis of meteosat second generation NDVI and surface reflectance data. Remote Sens. Environ. 114, 1687–1698 (2010)

    Article  Google Scholar 

  47. Put, R., Xua, Q.S., Massart, D.L., Vander Heyden, Y.: Multivariate adaptive regression splines (MARS) in chromatographic quantitative structure-retention relationship studies. J. Chromatogr. A 1055, 11–19 (2004)

    Article  Google Scholar 

  48. Quirós, E., Felicísimo A.M., Cuartero, A.: Testing multivariate adaptive regression splines (MARS) as a method of land cover classification of TERRA-ASTER satellite images. Sensors 9, 9011–9028 (2009)

    Article  Google Scholar 

  49. Rahman, H., Dedieu, G.: SMAC: a simplified method for the atmospheric correction of satellite measurements in the solar spectrum. Int. J. Remote Sens. 15, 123–143 (1994)

    Article  Google Scholar 

  50. Richards, J.A., Jia, X.: Remote Sensing Digital Image Analysis: An Introduction, 4th edn. Springer, Berlin (2006)

    Google Scholar 

  51. Richter, R.: ATCOR-2/3 User Guide (Version 7.1), DLR-German Aerospace Center, Remote Sensing Data Center (2010)

    Google Scholar 

  52. Richter, R., Schlaepfer, D.: Geo-atmospheric processing of airborne imaging spectrometry data: part 2: atmospheric/topographic correction. Int. J. Remote Sens. 23, 2631–2649 (2002)

    Article  Google Scholar 

  53. Samui, P., Das, S., Kim, D.: Uplift capacity of suction caisson in clay using multivariate adaptive regression spline. Ocean Eng. 38, 2123–2127 (2011)

    Article  Google Scholar 

  54. Schowengerdt, R.A.: Remote Sensing: Models and Methods for Image Processing, 3rd edn. Academic Press, Burlington (2007)

    Google Scholar 

  55. Steele, B.M.: Combining multiple classifiers: an application using spatial and remotely sensed information for land cover type mapping. Remote Sens. Environ. 74, 545–556 (2000)

    Article  Google Scholar 

  56. Tanre, D., Deroo, C., Duhaut, P., Herman, M., Morcrette, J.J.: Description of a computer code to simulate the satellite signal in the solar spectrum: the 5S code. Int. J. Remote Sens. 11, 659–668 (1990)

    Article  Google Scholar 

  57. Taylan, P., Weber, G.-W., Beck, A.: New approaches to regression by generalized additive models and continuous optimization for modern applications in finance, science and technology. Optim. J. Math. Program. Oper. Res. 56(5–6), 675–698 (2007)

    MATH  MathSciNet  Google Scholar 

  58. Taylan, P., Weber, G.-W., Liu, L., Yerlikaya-Özkurt, F.: On the foundations of parameter estimation for generalized partial linear models with B-splines and continuous optimization. Comput. Math. Appl. 60, 134–143 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  59. Taylan, P., Weber, G.-W., Yerlikaya-Özkurt, F.: A new approach to multivariate adaptive regression splines by using Tikhonov regularization and continuous optimization. Top 18(2), 377–395 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  60. Vermote, E.F., Tanré, D., Deuzé, J.L., Herman, M., Morcrette, J.: Second simulation of the satellite signal in the solar spectrum, 6S: an overview. IEEE Trans. Geosci. Remote Sens. 35, 675–686 (1997)

    Article  Google Scholar 

  61. Vermote, E.F., El Saleous, N.Z., Justice, J.O.: Atmospheric correction of MODIS data in the visible to middle infrared: first results. Remote Sens. Environ. 83, 97–111 (2002)

    Article  Google Scholar 

  62. Vidoli, F.: Evaluating the water sector in Italy through a two stage method using the conditional robust nonparametric frontier and multivariate adaptive regression splines. Eur. J. Oper. Res. 212, 583–595 (2011)

    Article  Google Scholar 

  63. Viscarra Rossel, R.A., Behrens, T.: Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 158, 46–54 (2010)

    Article  Google Scholar 

  64. Weber, G.-W., Batmaz, İ., Köksal, G., Taylan, P., Yerlikaya-Özkurt, F.: CMARS: a new contribution to nonparametric regression with multivariate adaptive regression splines supported by continuous optimization. Inverse Probl. Sci. Eng. (2011). doi:10.1080/17415977.2011.624770

    Google Scholar 

  65. Xu, M., Watanachaturaporn, P., Varshney, P.K., Arora, M.K.: Decision tree regression for soft classification of remote sensing data. Remote Sens. Environ. 97, 322–336 (2005)

    Article  Google Scholar 

  66. York, T.P., Eaves, L.J., van den Oord, E.J.C.G.: Multivariate adaptive regression splines: a powerful method for detecting disease-risk relationship differences among subgroups. Stat. Med. 25, 1355–1367 (2006)

    Article  MathSciNet  Google Scholar 

  67. Yu, J., Ekström, M.: Multispectral image classication using wavelets: a simulation study. Pattern Recognit. 36, 889–898 (2003)

    Article  Google Scholar 

  68. Yuanliu, X., Runsheng, W., Shengwei, L., Suming, Y., Bokun, Y.: Atmospheric correction of hyperspectral data using MODTRAN model. In: Remote Sensing of the Environment: 16th National Symposium on Remote Sensing of China: Proceedings of SPIE, pp. 7123, 2008. doi: 10.1117/12.815552

    Google Scholar 

  69. Zakeri, I.F., Adolph, A.L., Puyau, M.R., Vohra, F.A., Butte, N.F.: Multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents. J. Appl. Physiol. 108, 128–136 (2010)

    Article  Google Scholar 

  70. Zareipour, H., Bhattacharya, K., Cañizares, C.A.: Forecasting the hourly Ontario energy price by multivariate adaptive regression splines. In: Power Engineering Society General Meeting, Montreal. IEEE (2006)

    Google Scholar 

  71. Zhang, W., Wang, W., Wu, F.: The application of multi-variable optimum regression analysis to remote sensing imageries in monitoring landslide disaster. Energy Procedia 16, 190–196 (2012)

    Article  Google Scholar 

  72. Zhou, Y., Leung, H.: Predicting object-oriented software maintainability using multivariate adaptive regression splines. J. Syst. Softw. 80, 1349–1361 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semih Kuter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kuter, S., Weber, G.W., Özmen, A., Akyürek, Z. (2014). Modern Applied Mathematics for Alternative Modeling of the Atmospheric Effects on Satellite Images. In: Pinto, A., Zilberman, D. (eds) Modeling, Dynamics, Optimization and Bioeconomics I. Springer Proceedings in Mathematics & Statistics, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-319-04849-9_27

Download citation

Publish with us

Policies and ethics