Skip to main content

Zeta Functions and Continuous Time Dynamics

  • Conference paper
  • First Online:
Modeling, Dynamics, Optimization and Bioeconomics I

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 73))

  • 1206 Accesses

Abstract

The purpose of this survey is to introduce the reader to the relation between continuous time hyperbolic systems and zeta functions, focusing on Anosov flows and billiards as seen through the lenses of transfer operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Arguably bad

  2. 2.

    The attention here is restricted to smooth manifolds, but in some occasions one could relax such hypothesis or deal with a compact metric space X.

  3. 3.

    Note that if a = 0, by transitivity, any solution f must be constant.

  4. 4.

    For example the perturbation introduced by a smooth reparametrization obtained by choosing two points which have irrational ratio.

  5. 5.

    Modulo few nontrivial caveats tied to the orientation of E s along orbits, the choice of a suitable g, the choice of how approximate the δ.

  6. 6.

    Recall that by real analytic function in a neighborhood of a point we mean that in such neighborhood the function is infinitely many time differentiable and the Taylor expansion of f(x) converges to f(x). Thus, a real-analytic manifold is a manifold such that the charts are real-analytic and a real-analytic foliation is a foliation such that the map from each leaf to \(\mathbb{R}^{n}\) is real-analytic.

  7. 7.

    C (k, α) being the class of function k-times differentiable such that the k-th derivative has Hölder exponent α.

  8. 8.

    The metric entropy is defined as h(ϕ, μ) = ∫ E u(x)d μ(x) where μ is the SRB measure related of ϕ t . See [98] for an introduction to SRB measures.

  9. 9.

    The surface of constant negative curvature constructed from a modular group.

  10. 10.

    It is an operator. Such nomenclature comes from the one-dimensional framework, where it is actually the refraction/transmission matrix associated to the potential.

  11. 11.

    By dispersing we mean that the boundary is strictly concave inward at every smooth point of the boundary. By strongly chaotic we mean hyperbolic, ergodic, mixing, and Bernoulli.

  12. 12.

    In the sense of defining det(I + A) by setting \(\det (I + A)\doteq\sum _{0}^{\infty }\text{Tr}\varLambda ^{k}(A)\).

  13. 13.

    An irrational number \(x \in \mathbb{R}\) is Diophantine if there exist ν > 0 and M > 0 such that for all \((p,q) \in \mathbb{Z} \times \mathbb{N}{\ast}\) we have \(\left \vert x -\frac{p} {q}\right \vert > \frac{M} {q^{2+\nu }}\).

  14. 14.

    One should think of this as the problem of describing the set of prime numbers such that p, p + 2 are both prime.

References

  1. Anantharaman, N.: Precise counting results for closed orbits of Anosov flows. Ann. Sci. École Norm. Sup. (4) 33(1), 33–56 (2000)

    Google Scholar 

  2. Anantharaman, N., Zelditch, S.: Patterson-Sullivan distributions and quantum ergodicity. Ann. Henri Poincaré 8(2), 361–426 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Anosov, D.V.: Geodesic flows on Riemann manifolds with negative curvature. In: Proceedings of the Steklov Institute of Mathematics, No. 90. American Mathematical Society, Providence (1967). Translated from the Russian by S. Feder (1969)

    Google Scholar 

  4. Arnold, V.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble) 16(fasc. 1), 319–361 (1966)

    Google Scholar 

  5. Artin, M., Mazur, B.: On periodic points. Ann. Math. 81(2), 82–99 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  6. Atiyah, M.F., Bott, R.: Notes on the Lefschetz fixed point formula for elliptic complexes, vol. 2. Bott’s Collected Papers, Harvard University (1964)

    Google Scholar 

  7. Atiyah, M.F., Bott, R.: A Lefschetz fixed point formula for elliptic differential operators. Bull. Am. Math. Soc. 72, 245–250 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  8. Atiyah, M.F., Bott, R.: A Lefschetz fixed point formula for elliptic complexes, I. Ann. Math 86, 374–407 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  9. Baillif, M.: Kneading operators, sharp determinants, and weighted lefschetz zeta functions in higher dimensions. Duke Math. J. 124, 145–175 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Baladi, V.: Optimality of ruelle’s bound for the domain of meromorphy of generalized zeta functions. Port. Math. 49, 69–83 (1992)

    MATH  MathSciNet  Google Scholar 

  11. Baladi, V.: Positive transfer operators and decay of correlations. In: Advanced Series in Nonlinear Dynamics, vol. 16. World Scientific, River Edge (2000)

    Google Scholar 

  12. Baladi, V.: Dynamical zeta functions and kneading operators. http://www.math.ens.fr/~baladi/kyoto.ps (2002)

  13. Baladi, V., Baillif, M.: Kneading determinants and spectra of transfer operators in higher dimensions, the isotropic case. Ergod. Theor Dyn. Syst. 25, 1437–1470 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Baladi, V., Liverani, C.: Exponential decay of correlations for piecewise cone hyperbolic contact flows. Commun. Math. Phys. 314(3), 689–773 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Baladi, V., Tsujii, M.: Anisotropic hölder and sobolev spaces for hyperbolic diffeomorphisms.c Annales de l’Institut Fourier, Grenoble 57, 127–154 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Baladi, V., Tsujii, M.: Dynamical determinants and spectrum for hyperbolic diffeomorphisms. In: Geometric and probabilistic structures in dynamics. Contemporary Mathematics series, vol. 469, pp. 29–68. American Mathematical Society, Providence (2008)

    Google Scholar 

  17. Blank, M., Keller, G., Liverani, C.: Ruelle-Perron-Frobenius spectrum for Anosov maps. Nonlinearity 15(6), 1905–1973 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Bowen, R.: Periodic points and measures for axiom A diffeomorphisms. Trans. Am. Math. Soc. 154, 377–397 (1971)

    MATH  MathSciNet  Google Scholar 

  19. Bowen, R.: Symbolic dynamics for hyperbolic flows. Am. J. Math. 95, 429–460 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  20. Butterley, O., Liverani, C.: Smooth Anosov flows: correlation spectra and stability. J. Mod. Dyn. 1(2), 301–322 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Chernov, N.I.: Markov approximations and decay of correlations for Anosov flows. Ann. Math. 147(2), 269–324 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Connes, A.: Noncommutative geometry and the riemann zeta function. http://www.alainconnes.org (1998)

  23. Connes, A.: Trace formula in noncommutative geometry and the zeros of the riemann zeta function. http://www.alainconnes.org (1999)

  24. Cvitanović, P., Artuso, R., Mainieri, R., Tanner, G., Vattay, G.: Chaos: Classical and Quantum. Niels Bohr Institute, Copenhagen (2009)

    Google Scholar 

  25. Cvitanovic, P., Eckhardt, B.: Periodic-orbit quantization of chaotic systems. Phys. Rev. Lett. 63(8), 823–826 (1989)

    Article  MathSciNet  Google Scholar 

  26. Dahlqvist, P.: Approximate zeta functions for the Sinai billiard and related systems. Nonlinearity 8(1), 11–28 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  27. Dolgopyat, D.: On decay of correlations in Anosov flows. Ann. Math. 147, 357–390 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  28. Dolgopyat, D.: Prevalence of rapid mixing for hyperbolic flows. Ergod. Theor Dyn. Syst. 18, 1097–1114 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  29. Dolgopyat, D.: Prevalence of rapid mixing 2: topological prevalence. Ergod. Theor Dyn. Syst. 20, 1045–1059 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. Faure, F., Sjöstrand, J.: Upper bound on the density of Ruelle resonances for Anosov flows. Commun. Math. Phys. 308, 325–364 (2011)

    Article  MATH  Google Scholar 

  31. Faure, F., Tsujii, M.: Prequantum transfer operator for symplectic Anosov diffeomorphism. ArXiv e-prints, arXiv:1206.0282v2 (2013)

    Google Scholar 

  32. Fried, D.: Analytic torsion and closed geodesics on hyperbolic manifolds. Invent. Math. 84(3), 523–540 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  33. Fried, D.: The zeta functions of Ruelle and Selberg: I. Ann. Scientifiques de L’ É.N.S. 19(4), 491–517 (1986)

    MATH  MathSciNet  Google Scholar 

  34. Fried, D.: Meromorphic zeta functions for analytic flows. Commun. Math. Phys. 174, 161–190 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  35. Gallavotti, G.: Zeta functions and basic sets. Atti Accademia Nazionale dei Lincei 61, 309–317 (1976)

    MathSciNet  Google Scholar 

  36. Gaspard, P., Rice, S.: Semiclassical quantization of the scattering from a classically chaotic repellor. J. Chem. Phys. 90, 2242–2254 (1989)

    Article  MathSciNet  Google Scholar 

  37. Giulietti, P., Liverani, C., Pollicott, M.: Anosov flows and dynamical zeta functions. Ann. Math. (2) 178(2), 687–773 (2013)

    Google Scholar 

  38. Gouëzel, S., Liverani, C.: Banach spaces adapted to anosov systems. Ergod. Theor Dyn. Syst. 26, 189–217 (2006)

    Article  MATH  Google Scholar 

  39. Gouëzel, S., Liverani, C.: Compact locally maximal hyperbolic sets for smooth maps: fine statistical properties. J. Differ. Geom. 79, 433–477 (2008)

    MATH  Google Scholar 

  40. Gutzwiller, M.C.: Periodic orbits and classical quantization conditions. J. Math. Phys. 12, 343–358 (1971)

    Article  Google Scholar 

  41. Harayama, T., Shudo, A.: Zeta function derived from the boundary element method. Phys. Lett. A 165(5–6), 417–426 (1992)

    Article  MathSciNet  Google Scholar 

  42. Harayama, T., Shudo, A., Tasaki, S.: A functional equation for semiclassical fredholm determinant for strongly chaotic billiards. Progress Theor. Phys. Suppl. 139, 460–469 (2000)

    Article  Google Scholar 

  43. Hejhal, D.A.: The selberg trace formula and the riemann zeta function. Duke Math. J. 43, 441–482 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  44. Ikawa, M.: On the existence of the poles of the scattering matrix for several convex bodies. Proc. Jpn. Acad. Ser. A Math. Sci. 6(4), 91–93 (1988)

    Article  MathSciNet  Google Scholar 

  45. Ikawa, M.: Singular perturbation of symbolic flows and poles of the zeta function. Osaka J. Math. 27, 281–300 (1990)

    MATH  MathSciNet  Google Scholar 

  46. Ikawa, M.: Singular perturbation of symbolic flows and poles of the zeta function. Osaka J. Math. 27, 161–174 (1992)

    MathSciNet  Google Scholar 

  47. Ikawa, M.: On zeta functions and the scattering poles for several complex bodies. J. Equ. aux Derivees Partielles 2 (1994)

    Google Scholar 

  48. Katok, A., Knieper, G., Pollicott, M., Weiss, H.: Differentiability of entropy for Anosov and geodesic flows. Bull. Am. Math. Soc. 22(2), 285–293 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  49. Katsuda, A., Sunada, T.: Closed orbits in homology classes. Publications Mathématiques de L’IHÉS 71(1), 5–32 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  50. Kitaev, A.Y.: Fredholm determinants for hyperbolic diffeomorphisms of finite smoothness. Nonlinearity 12, 141–179 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  51. Lang, S.: Sur les séries L d’une variété algébrique. Bull. Soc. Math. France 84, 385–407 (1956)

    MATH  MathSciNet  Google Scholar 

  52. Liverani, C.: Decay of correlation. Ann. Math. 142, 239–301 (1995)

    MATH  MathSciNet  Google Scholar 

  53. Liverani, C.: On contact Anosov flows. Ann. Math. 159, 1275–1312 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  54. Liverani, C.: Fredholm determinants, Anosov maps and Ruelle resonances. Discrete Contin. Dyn. Syst. 13(5), 1203–1215 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  55. Liverani, C., Tsujii, M.: Zeta functions and dynamical systems. Nonlinearity 19(10), 2467–2473 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  56. MacPherson, R.D. (ed.): Raoul Bott Collected Papers, vol. 2. Chapter Notes on the Lefschetz Fixed Point Theorem for Elliptic Complexes. Contemporary Mathematicians. Birkhäuser, Boston (1994)

    Google Scholar 

  57. Margulis, G.A.: Certain applications of ergodic theory to the investigation of manifolds of negative curvature. Funkcional. Anal. i Priložen. 3(4), 89–90 (1969)

    MathSciNet  Google Scholar 

  58. Margulis, G.A.: Certain measures that are connected with U-flows on compact manifolds. Funkcional. Anal. i Priložen. 4(1), 62–76 (1970)

    MathSciNet  Google Scholar 

  59. Margulis, G.A.: On some aspects of the theory of Anosov systems. In: Springer Monographs in Mathematics. With a survey by R. Sharp: Periodic Orbits of Hyperbolic Flows, (trans: Russian by Szulikowska, V.V). Springer, Berlin (2004)

    Google Scholar 

  60. Marklof, J.: Selberg’s trace formula: an introduction. In: Bolte, J., Steiner, F. (eds.) Hyperbolic Geometry and Applications in Quantum Chaos and Cosmology. London Mathematical Society Lecture Notes Series, vol. 397, pp. 83–119. Cambridge University Press, Cambridge (2011)

    Chapter  Google Scholar 

  61. Mayer, D.H.: The thermodynamic formalism approach to Selberg’s zeta function for PSL(2, Z). Bull. Am. Math. Soc. (N.S.) 25(1), 55–60 (1991)

    Google Scholar 

  62. Naud, F.: Analytic continuation of a dynamical zeta function under a Diophantine condition. Nonlinearity 14(5), 995–1009 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  63. Naud, F.: Entropy and decay of correlations for real analytic semi-flows. Ann. Henri Poincaré 10(3), 429–451 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  64. Parry, W., Pollicott, M.: An analogue of the prime number theorem for closed orbits of shifts of finite type and their suspensions. Ann. Math. 118, 573–591 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  65. Parry, W., Pollicott, M.: Zeta functions and the periodic orbit structure of hyperbolic dynamics. In: Astérisque, vol. 187–188. Société mathématique de France, Paris (1990)

    Google Scholar 

  66. Petkov, V.: Dynamical zeta function for several strictly convex obstacles. Can. Math. Bull 51(1), 100–113 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  67. Pollicott, M.: A complex Ruelle-Perron-Frobenius theorem and two counterexamples. Ergod. Theor Dyn. Syst. 4, 135–146 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  68. Pollicott, M.: On the rate of mixing of Axiom A flows. Invent. Math. 81, 413–426 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  69. Pollicott, M.: Meromorphic extensions of generalised zeta functions. Invent. Math. 85, 147–164 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  70. Pollicott, M.: Zeta functions and analyticity of metric entropy for Anosov systems. Isr. J. Math. 76(3), 257–263 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  71. Pollicott, M.: Dynamical zeta functions and closed orbits for geodesic and hyperbolic flows. In: Frontiers in Number Theory, Physics, and Geometry. I, pp. 379–398. Springer, Berlin (2006)

    Google Scholar 

  72. Pollicott, M., Sharp, R.: Exponential error terms for growth functions on negatively curved surfaces. Am. J. Math 120, 1019–1042 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  73. Pollicott, M., Sharp, R.: Error terms for closed orbits of hyperbolic flows. Ergod. Theor Dyn. Syst. 21, 545–562 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  74. Pollicott, M., Sharp, R.: Correlations for pairs of closed geodesics. Invent. Math. 163, 1–24 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  75. Ratner, M.: The rate of mixing for geodesic and horocycle flows. Ergod. Theor Dyn. Syst. 7, 267–288 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  76. Ruelle, D.: Zeta-functions for expanding maps and Anosov flows. Invent. Math. 34, 231–242 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  77. Ruelle, D.: Flots qui ne melangént pas exponentiellement. C. R. Acad. Sci. Paris Ser. I Math. 296 (1983)

    Google Scholar 

  78. Ruelle, D.: Resonances for Axiom A flows. J. Differ. Geom. 25(1), 99–116 (1987)

    MATH  MathSciNet  Google Scholar 

  79. Ruelle, D.: An extension of the theory of Fredholm determinants. Publications mathématique de l’I.H.É.S. 72, 175–193 (1991)

    Google Scholar 

  80. Ruelle, D.: Dynamical zeta functions and transfer operators. Not. Am. Math. Soc. 49(8), 887–895 (2002)

    MATH  MathSciNet  Google Scholar 

  81. Rugh, H.H.: Generalized Fredholm determinants and Selberg zeta functions for Axiom A dynamical systems. Ergod. Theor Dyn. Syst. 16(4), 805–819 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  82. Sanchez-Morgado, H.: R-torsion and zeta functions for analytic Anosov flows on 3-manifolds. Trans. Am. Math. Soc. 348(3), 963–973 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  83. Sarnak, P.: Determinants of laplacian. Commun. Math. Phys. 110, 113–120 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  84. Selberg, A.: Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc. (N.S.) 20, 47–87 (1956)

    Google Scholar 

  85. Shudo, A., Harayama, T., Tasaki, S.: Semiclassical Fredholm determinant for strongly chaotic billiards. Nonlinearity 12(4), 1113 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  86. Sinaĭ, J.G.: Geodesic flows on compact surfaces of negative curvature. Soviet Math. Dokl. 2, 106–109 (1961)

    MATH  MathSciNet  Google Scholar 

  87. Sinai, Y.G.: The asymptotic behaviour of the number of closed geodesics on a compact manifold of negative curvature. Trans. Am. Math. Soc. 73, 227–250 (1968)

    MATH  Google Scholar 

  88. Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73(6), 747–817 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  89. Stoyanov, L.: Scattering resonances for several small convex bodies and the Lax-Phillips conjecture. Mem. Am. Math. Soc. 199(933) (2009)

    Google Scholar 

  90. Stoyanov, L.: Regular decay of ball diameters and spectra of ruelle operators for contact anosov flows. ArXiv e-prints (2011)

    Google Scholar 

  91. Tsujii, M.: Decay of correlations in suspension semi-flows of angle-multiplying maps. Ergod. Theor Dyn. Syst. 28(1), 291–317 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  92. Tsujii, M.: Quasi-compactness of transfer operators for contact Anosov flows. Nonlinearity 23(7), 1495–1545 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  93. Tsujii, M.: Contact Anosov flows and the Fourier-Bros-Iagolnitzer transform. Ergod. Theory Dyn. Syst. 32(6), 2083–2118 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  94. Voros, A.: The hadamard factorization of the Selberg zeta function on a compact Riemann surface. Phys. Lett. B 180(3), 245–246 (1986)

    Article  MathSciNet  Google Scholar 

  95. Voros, A.: Spectral functions, special functions and the Selberg zeta function. Commun. Dyn. Syst. 110, 439–465 (1987)

    MATH  MathSciNet  Google Scholar 

  96. Voros, A.: Unstable periodic orbits and semiclassical quantisation. J. Phys. A Math. Gen. 21(3), 685–692 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  97. Wirzba, A.: The Casimir effect as a scattering problem. J. Phys. A Math. Theor. 41(16) (2008)

    Google Scholar 

  98. Young, L-S.: What are SRB measures, and which dynamical systems have them? J. Stat. Phys. 108, 733–754 (2002)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank V. Baladi, C. Liverani and M. Tsujii for helpful discussions and comments along the years. I also thank the anonymous referee for pointing out a shameful quotation error. Partially supported by ERC Advanced Grant MALADY (246953) and CNPq Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Giulietti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Giulietti, P. (2014). Zeta Functions and Continuous Time Dynamics. In: Pinto, A., Zilberman, D. (eds) Modeling, Dynamics, Optimization and Bioeconomics I. Springer Proceedings in Mathematics & Statistics, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-319-04849-9_18

Download citation

Publish with us

Policies and ethics