BHP Universality in Energy Sources

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 73)


We consider the α re-scaled energy source (ES) daily positive returns r(t) α and negative returns (−r(t)) α that we call, after normalization, the α positive fluctuations and α negative fluctuations, respectively. We use the Kolmogorov-Smirnov statistical test as a method to find the values of α that optimize the data collapse of the histogram of the α fluctuations with the truncated Bramwell-Holdsworth-Pinton (BHP) probability density function. Using the optimal αs we compute analytical approximations of the probability distributions of the normalized positive and negative energy source (ES) daily returns r(t). Since the BHP probability density function appears in several other dissimilar phenomena, our results reveal a universal feature of energy source prices and a new measure that allows the comparison between the intensity of gains and losses of market activity in different energy sources prices.


Energy Source Probability Density Function Daily Return Positive Return Negative Return 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Nico Stollenwerk, Jason Gallas, Peter Holdsworth, Imre Janosi and Henrik Jensen for showing us the relevance of the Bramwell-Holdsworth-Pinton distribution. We thank Susan Jenkins for the helpful discussions and comments. A previous version of this work was presented in ICIAM 2011. We acknowledge the financial support of LIAAD-INESC TEC through ‘Strategic Project-LA 14-2013–2014’ with reference PEst-C/EEI/LA0014/2013, USP-UP project, IJUP, Faculty of Sciences, University of Porto, Calouste Gulbenkian Foundation, FEDER, POCI 2010 and COMPETE Programmes and Fundação para a Ciência e a Tecnologia (FCT) through Project “Dynamics and Applications”, with reference PTDC/MAT/121107/2010.


  1. 1.
    Andersen, T.G., Bollerslev, T., Frederiksen, P., Nielse, M.: Continuos-time models, realized volatilities and testable distributional implications for daily stock returns. J. Appl. Econom. 25(2), 233–261 (2010)CrossRefGoogle Scholar
  2. 2.
    Barnhart, S.W., Giannetti, A.: Negative earnings, positive earnings and stock return predictability: an empirical examination of market timing. J. Empir. Finance 16, 70–86 (2009)CrossRefGoogle Scholar
  3. 3.
    Bramwell, S.T., Holdsworth, P.C.W., Pinton, J.F.: Universality of rare fluctuations in turbulence and critical phenomena. Nature 396, 552–554 (1998)CrossRefGoogle Scholar
  4. 4.
    Bramwell, S.T., Fortin, J.Y., Holdsworth, P.C.W., Peysson, S., Pinton, J.F., Portelli, B., Sellitto, M.: Magnetic fluctuations in the classical XY model: the origin of an exponential tail in a complex system. Phys. Rev E 63, 041106 (2001)CrossRefGoogle Scholar
  5. 5.
    Chowdhury, D., Stauffer, D.: A generalized spin model of financial markets. Eur. Phys. J. B8, 477–482 (1999)CrossRefGoogle Scholar
  6. 6.
    Cont, R., Potters, M., Bouchaud, J.P.: Scaling in stock market data: stable laws and beyond. In: Dubrulle, B., Groner, F., Sornette, D. (eds.) Scale Invariance and Beyond. Centre de Physique des Houches, vol. 7, pp. 75–85. Springer, Berlin (1997)CrossRefGoogle Scholar
  7. 7.
    Cutler, D.M., Poterba, J.M., Summers, L.H.: What moves stock prices? J. Portfolio Manag. 15(3), 4–12 (1989)CrossRefGoogle Scholar
  8. 8.
    Dahlstedt, K., Jensen, H.J.: Universal fluctuations and extreme-value statistics. J. Phys. A Math. Gen. 34, 11193–11200 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Gabaix, X., Parameswaran, G., Plerou, V., Stanley, E.: A theory of power-law distributions in financial markets. Nature 423, 267–270 (2003)CrossRefGoogle Scholar
  10. 10.
    Gonçalves, R., Pinto, A.A.: Negro and Danube are mirror rivers. Special issue dynamics & applications in honor of Mauricio Peixoto and David Rand. J. Differ. Equat. Appl. 16(12), 1491–1499 (2010)zbMATHGoogle Scholar
  11. 11.
    Gonçalves, R., Ferreira, H., Pinto, A.A., Stollenwerk, N.: Universality in nonlinear prediction of complex systems. Special issue in honor of Saber Elaydi. J. Differ. Equat. Appl. 15(11–12), 1067–1076 (2009)CrossRefzbMATHGoogle Scholar
  12. 12.
    Gonçalves, R., Pinto, A.A., Stollenwerk, N.: Cycles and universality in sunspot numbers fluctuations. Astrophys. J. 691, 1583–1586 (2009)CrossRefGoogle Scholar
  13. 13.
    Gonçalves, R., Ferreira, H., Stollenwerk, N., Pinto, A.A.: Universal fluctuations of the AEX index. Phys. A Stat. Mech. Appl. 389, 4776–4784 (2010)CrossRefGoogle Scholar
  14. 14.
    Gonçalves, R., Ferreira, H., Pinto, A.A.: Universality in the stock exchange market. Special issue: dynamics, games and applications I in honour of Mauricio Peixoto and David Rand. J. Differ. Equat. Appl. 17(7), 1049–1063 (2011)Google Scholar
  15. 15.
    Gonçalves, R., Ferreira, H., Pinto A.A.: Universality in PSI20 fluctuations. In: Peixoto, M., Pinto, A.A., Rand, D. (eds.) Dynamics, Game and Science I. Springer Proceedings in Mathematics, vol. 1, pp. 405–420. Springer, Berlin (2011)CrossRefGoogle Scholar
  16. 16.
    Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge, UK (1997)zbMATHGoogle Scholar
  17. 17.
    Landau, L.D., Lifshitz, E.M.: Statistical Physics, vol. 1. Pergamon Press, Oxford (1980)Google Scholar
  18. 18.
    Lillo, F., Mantegna, R.: Statistical properties of statistical ensembles of stock returns. Int. J. Theor. Appl. Finance 3, 405–408 (2000)CrossRefzbMATHGoogle Scholar
  19. 19.
    Lillo, F., Mantegna, R.: Ensemble properties of securities traded in the Nasdaq market. Phys. A 299, 161–167 (2001)CrossRefzbMATHGoogle Scholar
  20. 20.
    Mandelbrot, B.: The variation of certain speculative prices. J. Bus. 36, 392–417 (1963)CrossRefGoogle Scholar
  21. 21.
    Mandelbrot, B.: Fractals and Scaling in Finance. Springer, Berlin (1997)CrossRefzbMATHGoogle Scholar
  22. 22.
    Mantegna, R., Stanley, E.: Scaling behaviour in the dynamics of a economic index. Nature 376, 46–49 (2001)CrossRefGoogle Scholar
  23. 23.
    Pagan, A.: The econometrics of financial markets. J. Empir. Finance 3, 15–102 (1996)CrossRefGoogle Scholar
  24. 24.
    Plerou, V., Amaral, L., Gopikrishnan, P., Meyer, M., Stanley, E.: Universal and nonuniversal properties of cross correlations in financial time series. Phys. Rev. Lett. 83(7), 1471–1474 (1999)CrossRefGoogle Scholar
  25. 25.
    Stanley, H., Plerou, V., Gabix, X.: A statistical physics view of financial fluctuations: evidence for scaling and universality. Phys. A 387, 3967–3981 (2008)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.LIAAD—INESC TECPortoPortugal
  2. 2.Faculty of Engineering, Section of MathematicsUniversity of Porto, R. Dr. Roberto Frias s/nPortoPortugal
  3. 3.Faculty of Sciences, Department of MathematicsUniversity of PortoPortoPortugal

Personalised recommendations