Worldwide Survey of Biodegradable Feedstocks, Waste-to-Energy Technologies, and Adoption of Technologies

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 73)

Abstract

The current chapter survey categories of biodegradable waste, including manure and animal waste, food waste, crop residues, and sewage waste. The chapter then identify and analyze several major types of waste management technologies, such as anaerobic digestion, landfilling, composting, and incineration. It concludes with a brief discussion on the different patterns of adoption among regions.

References

  1. 1.
    Bangalore, M., Hochman, G., Zilberman, D.: Differences in the Adoption of Agricultural Anaerobic Digestion in Europe and the United States (2012)Google Scholar
  2. 2.
    Bernstad, A., la Cour Jansen, J.: Review of comparative LCAs of food waste management systems: Current status and potential improvements. Waste Manag. 32, 2439–2455 (2012)CrossRefGoogle Scholar
  3. 3.
    Braber, K.: Anaerobic digestion of municipal solid waste: a modern waste disposal option on the verge of breakthrough. Biomass Bioenergy 9(1), 365–376 (1995)CrossRefGoogle Scholar
  4. 4.
    Brown, D., Li, Y.: Solid state anaerobic co-digestion of yard waste and food waste for biogas production. Bioresour. Technol. 127, 275–280 (2012)CrossRefGoogle Scholar
  5. 5.
    Burkholder, J., Libra, B., Weyer, P., Heathcote, S., Kolpin, D., Thorne, P.S., Wichman, M.: Impacts of waste from concentrated animal feeding operations on water quality. Environ. Health Perspect. 115(2), 308–312 (2007). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1817674/
  6. 6.
    Bywater, A.: A review of anaerobic digestion plants on UK farms – barriers. Roy. Agr. Soc. Engl. (2011)Google Scholar
  7. 7.
    Canakci, M.: The potential of restaurant waste lipids as biodiesel feedstocks. Bioresour. Technol. 98(1), 183–190 (2007)CrossRefGoogle Scholar
  8. 8.
    Cao, W., Han, H., et al.: Preparation of biodiesel from soybean oil using supercritical methanol and co-solvent. Fuel 84(4), 347–351 (2005)CrossRefGoogle Scholar
  9. 9.
    Demirbas, A.: Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energ Convers. Manag. 50(4), 923–927 (2009)CrossRefGoogle Scholar
  10. 10.
    Diaz-Felix, W., Riley, M.R., et al.: Pretreatment of yellow grease for efficient production of fatty acid methyl esters. Biomass Bioenergy 33(4), 558–563 (2009)CrossRefGoogle Scholar
  11. 11.
    Diggelman, C., Ham, R.K.: Household food waste to wastewater or to solid waste? That is the question. Waste Manag. Res. 21(6), 501–514 (2003)CrossRefGoogle Scholar
  12. 12.
    Donaldson, A.A., Kadakia, P., et al.: Production of energy and activated carbon from agri-residue: sunflower seed example. Appl. Biochem. Biotechnol. 168, 1–9 (2011)Google Scholar
  13. 13.
    Finnveden, G.R., Johansson, J., et al.: Life cycle assessment of energy from solid waste part 1: general methodology and results. J. Cleaner Production 13(3), 213–229 (2005)CrossRefGoogle Scholar
  14. 14.
    Haas, M.J.: Improving the economics of biodiesel production through the use of low value lipids as feedstocks: vegetable oil soapstock. Fuel Process. Technol. 86(10), 1087–1096 (2005)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Hall, K.D., Guo, J., et al.: The progressive increase of food waste in America and its environmental impact. PLoS One 4(11), e7940 (2009)CrossRefGoogle Scholar
  16. 16.
    Kulkarni, M.G., Dalai, A.K.: Waste cooking oil an economical source for biodiesel: a review. Ind. Eng. Chem. Res. 45(9), 2901–2913 (2006)CrossRefGoogle Scholar
  17. 17.
    Lee, S., Posarac, D., Ellis, N.: Process simulation and economic analysis of biodiesel production processes using fresh and waste vegetable oil and supercritical methanol. Chem. Eng. Res. Design 89(12), 2626–2642 (2011)CrossRefGoogle Scholar
  18. 18.
    Linn, J.: Energy prices and the adoption of energy-saving technology. Econ. J. 118(553), 1986–2012 (2008)CrossRefGoogle Scholar
  19. 19.
    Liu, Y.-Y., Haynes, R.: Origin, nature, and treatment of effluents from dairy and meat processing factories and the effects of their irrigation on the quality of agricultural soils. Crit. Rev. Environ. Sci. Technol. 41(17), 1531–1599 (2011)CrossRefGoogle Scholar
  20. 20.
    Mata-Alvarez, J., Mace, S., et al.: Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour. Technol. 74(1), 3–16 (2000)Google Scholar
  21. 21.
    Menardo, S., Balsari, P.: An analysis of the energy potential of anaerobic digestion of agricultural by-products and organic waste. BioEnergy Res. 5, 759–767 (2012)CrossRefGoogle Scholar
  22. 22.
    Menger-Krug, E., Niederste-Hollenberg, J., et al.: Integration of microalgae systems at municipal wastewater treatment plants: implications for energy and emission balances. Environ. Sci. Technol. 46(21), 11505–11514 (2012)CrossRefGoogle Scholar
  23. 23.
    Othman, S.N., Noor, Z.Z., et al.: Review on life cycle assessment of integrated solid waste management in some Asian countries. J. Cleaner Production 41, 251–262 (2012)CrossRefGoogle Scholar
  24. 24.
    Parfitt, J., Barthel, M., et al.: Food waste within food supply chains: quantification and potential for change to 2050. Philos. Trans. R. Soc. B Biol. Sci. 365(1554), 3065–3081 (2010)CrossRefGoogle Scholar
  25. 25.
    Rulkens, W.: Sewage sludge as a biomass resource for the production of energy: overview and assessment of the various options. Energy Fuels 22(1), 9–15 (2007)CrossRefGoogle Scholar
  26. 26.
    Sakai, S., Sawell, S., et al.: Waste Manag. 16(5), 341–350 (1996)Google Scholar
  27. 27.
    U.S. Environmental Protection Agency: primer for municipal wastewater treatment systems. http://www.epa.gov/npdes/pubs/primer.pdf (2004)
  28. 28.
    U.S. Environmental Protection Agency secretariat: risk assessment evaluation for concentrated animal feeding operations. The U.S. Environmental Protection Agency (2004)Google Scholar
  29. 29.
    Zhang, R., El-Mashad, H.M., et al.: Characterization of food waste as feedstock for anaerobic digestion. Bioresour. Technol. 98(4), 929–935 (2007)CrossRefGoogle Scholar
  30. 30.
    Zilberman, D., Zhao, J., Heiman, A.: Adoption versus adaptation, with emphasis on climate change. Annu. Rev. Resource Econ. 4, 27–53 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Rutgers UniversityNew BrunswickUSA
  2. 2.University of CaliforniaBerkeleyUSA

Personalised recommendations