Dynamic Management of Fossil Fuel, Biofuel, and Solar Energy

  • Scott Kaplan
  • Charles Séguin
  • Karl W. Steininger
  • David Zilberman
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 73)


Cheap energy has been key to the modern economy. The use of electricity and the internal combustion engine have been crucial for current patterns of civilization, and reduction in availability or increases in the cost of energy have serious consequences for current activities of society. Concerns about climate change, depletion of fossil fuel, and exchange rates are causing societies to transition from fossil to renewable fuel. The transition is challenging both in terms of modeling and policy design. There is an emerging portfolio of alternative technologies, but the extent and order in which they will be introduced is uncertain and presents a major challenge.


Fossil Fuel Shadow Price Renewable Fuel Tradable Permit Resource Stock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alonso, A., Mingo, M.: The expansion of “non conventional” production of natural gas (tight gas, gas shale and coal bed methane). A silent revolution. In: Energy Market (EEM), 2010 7th International Conference on the European, pp. 1–8. IEEE (2010)Google Scholar
  2. 2.
    Baumol, W.J., Oates, W.E.: Economics, Environmental Policy, and the Quality of Life. Gregg Revivals, Aldershot (1993)Google Scholar
  3. 3.
    Becker, G.S. Human capital: A Theoretical and Empirical Analysis, with Special Reference to Education. University of Chicago Press, Chicago (2009)Google Scholar
  4. 4.
    Brandt, A.R., Farrell, A.E.: Scraping the bottom of the barrel: greenhouse gas emission consequences of a transition to low-quality and synthetic petroleum resources. Climatic Change 84(3–4), 241–263 (2007)CrossRefGoogle Scholar
  5. 5.
    Chakravorty, U., Roumasset, J., Tse, K.: Endogenous substitution among energy resources and global warming. J. Polit. Econ. 105, 1201–1234 (2009)CrossRefGoogle Scholar
  6. 6.
    Chakravorty, U., Hochman, E., Umetsu, C., Zilberman, D.: Water allocation under distribution losses: comparing alternative institutions. J. Econ. Dyn. Control 33(2), 463–476 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Cheng, H., Hu, Y.: Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China. Bioresourc. Technol. 101(11), 3816–3824 (2010)CrossRefGoogle Scholar
  8. 8.
    Chung, T.S., Patino-Echeverri, D., Johnson, T.L.: Expert assessments of retrofitting coal-fired power plants with carbon dioxide capture technologies. Energy Pol. 39(9), 5609–5620 (2011)CrossRefGoogle Scholar
  9. 9.
    Economides, M.J., Oligney, R.E., Lewis, P.E.: US natural gas in 2011 and beyond. J. Nat. Gas Sci. Eng. 8, 2–8 (2012)CrossRefGoogle Scholar
  10. 10.
    Energy Information Administration (EIA): International energy statistics: total electricity installed capacity (million kilowatts). Available from: (2013)
  11. 11.
    Ehrig, R., Behrendt, F.: Co-firing of imported wood pellets: an option to efficiently save CO 2 emissions in Europe? Energy Pol. 59, 283–300 (2013)CrossRefGoogle Scholar
  12. 12.
    Frondel, M., Ritter, N., Schmidt, C.M., Vance, C.: Economic impacts from the promotion of renewable energy technologies: the German experience. Energy Pol. 38(8), 4048–4056 (2010)CrossRefGoogle Scholar
  13. 13.
    Gangopadhyay, S., Ramaswami, B., Wadhwa, W.: Reducing subsidies on household fuels in India: how will it affect the poor? Energy Pol. 33(18), 2326–2336 (2005)CrossRefGoogle Scholar
  14. 14.
    Grossmann, W.D., Grossmann, I., Steininger, K.W.: Distributed solar electricity generation across large geographic areas, part I: a method to optimize site selection, generation and storage. Renew. Sustain. Energy Rev. 25, 831–843 (2013)CrossRefGoogle Scholar
  15. 15.
    Heiman, A., Zilberman, D., Graft, G.: University research and offices of technology transfer. Calif. Manag. Rev. 45(1), 88–115 (2002)CrossRefGoogle Scholar
  16. 16.
    Hekkert, M.P., Hendriks, F., Faaij, A., Neelis, M.L.: Natural gas as an alternative to crude oil in automotive fuel chains well-to-wheel analysis and transition strategy development. Energy Pol. 33, 579–594 (2005)CrossRefGoogle Scholar
  17. 17.
    Hochman, G., Rajagopal, D., Zilberman, D.: Are biofuels the culprit? OPEC, food, and fuel. Am. Econ. Rev. 100(2), 183–187 (2010)CrossRefGoogle Scholar
  18. 18.
    Huang, H., Khanna, M., Önal, H., Chen, X.: Stacking low carbon policies on the renewable fuels standard: economic and greenhouse gas implications. Energy Pol. 56, 5–15 (2012)CrossRefGoogle Scholar
  19. 19.
    Khanna, M., Crago, C.L.: Measuring indirect land use change with biofuels: implications for policy. Annu. Rev. Resour. Econ. 4(1), 161–184 (2012)CrossRefGoogle Scholar
  20. 20.
    Khanna, M., Scheffran, J., Zilberman, D.: Handbook of Bioenergy Economics and Policy, vol. 33. Springer, New York (2010)CrossRefGoogle Scholar
  21. 21.
    Kulmer, V., Koland, O., Steininger, K.W., Fürst, B., Käfer, A.: The interaction of spatial planning and transport policy: a regional perspective on sprawl. J. Transport Land Use 7(1), 57–77 (2014)CrossRefGoogle Scholar
  22. 22.
    Laborde, D., Valin, H.: Modeling land-use changes in a global CGE: assessing the EU biofuel mandates with the MIRAGE-BioF model. Climate Change Econ. 3(03) (2012)Google Scholar
  23. 23.
    Logan, J., Heath, G., Macknick, J., Paranhos, E., Boyd, W., Carlson, K.: Natural Gas and the Transformation of the US Energy Sector: Electricity. National Renewable Energy Laboratory (NREL), Golden (2012)CrossRefGoogle Scholar
  24. 24.
    López-Pena, À., Pérez-Arriaga, I., Linares, P.: Renewables vs. energy efficiency: the cost of carbon emissions reduction in Spain. Energy Pol. 50(C), 659–668 (2012)Google Scholar
  25. 25.
    Rajagopal, D., Zilberman, D.: Environmental, economic and policy aspects of biofuels. Found. Trends\(\circledR\) Microeconomics 4(5), 353–468 (2008)Google Scholar
  26. 26.
    Rajagopal, D., Sexton, S.E., Roland-Holst, D., Zilberman, D.: Challenge of biofuel: filling the tank without emptying the stomach? Environ. Res. Lett. 2(4), 044004 (2007)CrossRefGoogle Scholar
  27. 27.
    Sikkema, R., Steiner, M., Junginger, M., Hiegl, W., Hansen, M.T., Faaij, A.: The European wood pellet markets: current status and prospects for 2020. Biofuels Bioproducts Biorefining 5(3), 250–278 (2011)CrossRefGoogle Scholar
  28. 28.
    Sudiro, M., Bertucco, A.: Production of synthetic gasoline and diesel fuel by alternative processes using natural gas and coal: process simulation and optimization. Energy 34(12), 2206–2214 (2009)CrossRefGoogle Scholar
  29. 29.
    Takayama, T., Judge, G.G.: Spatial and temporal price and allocation models. Contrib. Econ. Anal. 73 (1971)Google Scholar
  30. 30.
    Veugelers, R.: Which policy instruments to induce clean innovating? Res. Pol. 41(10), 1770–1778 (2012)CrossRefGoogle Scholar
  31. 31.
    Weizhong, L., Hongtao, Z., Meng, M.: LNG exports from the United States and their impact on the global LNG market. Nat. Gas Ind. 6, 027 (2012)Google Scholar
  32. 32.
    White, B.: The Long Road for Natural Gas Vehicles. Office of the Federal Coordinator: Alaska Natural Gas Transportation Projects, Washington, DC/Anchorage, AL (2011)Google Scholar
  33. 33.
    World Watch Institute.: Study: biofuels more efficient as electricity source. Available from (2013)
  34. 34.
    Zilberman, D., Barrows, G., Hochman, G., Rajagopal, D.: On the indirect effect of biofuel. Am. J. Agric. Econ. 95(5), 1332–1337 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Scott Kaplan
    • 1
  • Charles Séguin
    • 2
  • Karl W. Steininger
    • 3
  • David Zilberman
    • 1
  1. 1.Department of Agricultural and Resource Economics at the University of CaliforniaBerkeleyUSA
  2. 2.Department of EconomicsUniversity of Quebec in Montreal (UQAM)MontrealCanada
  3. 3.Department of Economics and Wegener Center for Climate and Global ChangeUniversity of GrazGrazAustria

Personalised recommendations