Advertisement

Development of Intrinsic Models for Describing Near-Field Antenna Effects, Including Antenna-Medium Coupling, for Improved Radar Data Processing Using Full-Wave Inversion

  • Anh Phuong TranEmail author
  • Sébastien Lambot
Chapter
Part of the Springer Transactions in Civil and Environmental Engineering book series (STICEE)

Abstract

Proper description of antenna effects on ground-penetrating radar (GPR) data generally relies on numerical methods such as the Method of Moments (MoM) or Finite-Difference Time-Domain (FDTD) modeling approaches. Yet, numerical methods are computationally expensive and accurate reproduction of real measurements has remained a major challenge for many years. Recently, intrinsic modeling approaches, through which radar antennas are effectively described using their fundamental features, have demonstrated great promise for near-field radar antenna modeling. Although such approaches are not suited for designing radar antennas, they are particularly powerful for fast and accurate modeling, which is a prerequisite when full-wave inversion is applied, e.g., for estimating medium electrical properties. These approaches are also of great interest for filtering out antenna effects from measured radar data for improved subsurface imaging.

Keywords

Field Point Differential Global Position System Differential Global Position System Perfect Electrical Conductor Antenna Height 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author acknowledges the COST Action TU1208 “Civil Engineering Applications of Ground Penetrating Radar”, supporting this work. This research was funded by the Fonds de la Recherche Scientifique (FNRS, Belgium) and the Université catholique de Louvain (UCL, Belgium).

References

  1. Alvarez, Y., Las-Heras, F., Pino, M.R.: Reconstruction of equivalent currents distribution over arbitrary three-dimensional surfaces based on integral equation algorithms. IEEE Trans. Antennas Propag. 55, 3460–3468 (2007)CrossRefGoogle Scholar
  2. Chen, Y., Yang, S., He, S., Nie, Z.: Fast analysis of microstrip antennas over a frequency band using an accurate mom matrix interpolation technique. Prog. Electromagnet. Res.-Pier 109, 301–324 (2010)CrossRefGoogle Scholar
  3. Chew, W.C.: Waves and fields in inhomogeneous media. Van Nostrand Reinhold, New York (1990)Google Scholar
  4. Craeye, C., Gonzalez-Ovejero, D.: A review on array mutual coupling analysis. Radio Sci. 46, 25 (2011)CrossRefGoogle Scholar
  5. Craeye, C., Gilles, T., Dardenne, X.: Efficient full-wave characterization of arrays of antennas embedded in finite dielectric volumes. Radio Sci. 44, RS1S90, pp. 25 (2009)Google Scholar
  6. Crocco, L., D’Urso, M., Isernia, T.: Testing the contrast source extended Born inversion method against real data: the TM case. Inverse Prob. 21, S33–S50 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  7. Debye, P.: Polar molecules. Reinhold, New York (1929)zbMATHGoogle Scholar
  8. Diamanti, N., Giannopoulos, A.: Implementation of ADI-FDTD subgrids in ground penetrating radar FDTD models. J. Appl. Geophys. 67, 309–317 (2009)CrossRefGoogle Scholar
  9. Diamanti, N., Giannopoulos, A.: Employing ADI-FDTD subgrids for GPR numerical modelling and their application to study ring separation in brick masonry arch bridges. Near Surf. Geophys. 9, 245–256 (2011)CrossRefGoogle Scholar
  10. Fiaz, M.A., Frezza, F., Pajewski, L., Ponti, C., Schettini, G.: Asymptotic solution for a scattered field by cylindrical objects buried beneath a slightly rough surface. Near Surf. Geophys. 11, 177–183 (2013)CrossRefGoogle Scholar
  11. Frezza, F., Pajewski, L., Ponti, C., Schettini, G., Tedeschi, N.: Electromagnetic scattering by a metallic cylinder buried in a lossy medium with the cylindrical-wave approach. IEEE Geosci. Remote Sens. Lett. 10, 179–183 (2013a)CrossRefGoogle Scholar
  12. Frezza, F., Mangini, F., Pajewski, L., Schettini, G., Tedeschi, N.: Spectral domain method for the electromagnetic scattering by a buried sphere. J. Opt. Soc. America A-Opt. Image Sci. Vis. 30, 783–790 (2013b)CrossRefGoogle Scholar
  13. Gentili, G.G., Spagnolini, U.: Electromagnetic inversion in monostatic ground penetrating radar: TEM horn calibration and application. IEEE Trans. Geosci. Remote Sens. 38, 1936–1946 (2000)CrossRefGoogle Scholar
  14. Giannopoulos, A.: Modelling ground penetrating radar by GprMax. Constr. Build. Mater. 19, 755–762 (2005)CrossRefGoogle Scholar
  15. Huisman, J.A., Hubbard, S.S., Redman, J.D., Annan, A.P.: Measuring soil water content with ground penetrating radar: a review. Vadose Zone J. 2, 476–491 (2003)CrossRefGoogle Scholar
  16. Hyun, S.Y., Kim, S.Y., Kim, Y.S.: An equivalent feed model for the FDTD analysis of antennas driven through a ground plane by coaxial lines. IEEE Trans. Antennas Propag. 57, 161–167 (2009)CrossRefGoogle Scholar
  17. Ilic, M.M., Djordjevic, M., Ilic, A.Z., Notaros, B.M.: Higher order hybrid FEM-MoM technique for analysis of antennas and scatterers. IEEE Trans. Antennas Propag. 57, 1452–1460 (2009)CrossRefMathSciNetGoogle Scholar
  18. Klein, L.A., Swift, C.T.: Improved model for dielectric-constant of sea-water at microwave-frequencies. IEEE Trans. Antennas Propag. 25, 104–111 (1977)CrossRefGoogle Scholar
  19. Lambot, S., Andre, F.: Full-wave modeling of near-field radar data for planar layered media reconstruction. Geosci. Remote Sens. IEEE Trans. 52, 2295–2303 (2014)CrossRefGoogle Scholar
  20. Lambot, S., Slob, E.C., van den Bosch, I., Stockbroeckx, B., Vanclooster, M.: Modeling of ground-penetrating radar for accurate characterization of subsurface electric properties. IEEE Trans. Geosci. Remote Sens. 42, 2555–2568 (2004)CrossRefGoogle Scholar
  21. Lambot, S., Weihermüller, L., Huisman, J.A., Vereecken, H., Vanclooster, M., Slob, E.C.: Analysis of air-launched ground-penetrating radar techniques to measure the soil surface water content. Water Resour. Res. 42, W11403 (2006). doi: 10.1029/2006WR005097 Google Scholar
  22. Lambot, S., Slob, E., Vereecken, H.: Fast evaluation of zero-offset green’s function for layered media with application to ground-penetrating radar. Geophys. Res. Lett. 34, L21405 (2007). doi: 10.1029/2007GL031459 CrossRefGoogle Scholar
  23. Lambot, S., Binley, A., Slob, E., Hubbard, S.: Ground penetrating radar in hydrogeophysics. Vadose Zone J. 7, 137–139 (2008). doi: 10.2136/vzj2007.0180 CrossRefGoogle Scholar
  24. Meles, G., Greenhalgh, S., van der Kruk, J., Green, A., Maurer, H.: Taming the non-linearity problem in GPR full-waveform inversion for high contrast media. J. Appl. Geophys. 73, 174–186 (2011)CrossRefGoogle Scholar
  25. Michalski, K.A., Mosig, J.R.: Multilayered media green’s functions in integral equation formulations. IEEE Trans. Antennas Propag. 45, 508–519 (1997)CrossRefGoogle Scholar
  26. Millington, T.M., Cassidy, N.J., Nuzzo, L., Crocco, L., Soldovieri, F., Pringle, J.K.: Interpreting complex, three-dimensional, near-surface GPR surveys: an integrated modelling and inversion approach. Near Surf. Geophys. 9, 297–304 (2011)CrossRefGoogle Scholar
  27. Minet, J., Lambot, S., Slob, E.C., Vanclooster, M.: Soil surface water content estimation by full-waveform GPR signal inversion in the presence of thin layers. IEEE Trans. Geosci. Remote Sens. 48, 1138–1150 (2010)CrossRefGoogle Scholar
  28. Moghadas, D., André, F., Vereecken, H., Lambot, S.: Efficient loop antenna modeling for zero-offset, off-ground electromagnetic induction in multilayered media. Geophysics, 75, WA125–WA134 (2010)Google Scholar
  29. Pantoja, M.F., Yarovoy, A.G., Bretones, A.R., Garcia, S.G.: Time domain analysis of thin-wire antennas over lossy ground using the reflection-coefficient approximation. Radio Sci. 44, 14 (2009)Google Scholar
  30. Patriarca, C., Lambot, S., Mahmoudzadeh, M.R., Minet, J., Slob, E.: Reconstruction of sub-wavelength fractures and physical properties of masonry media using full-waveform inversion of proximal penetrating radar. J. Appl. Geophys. 74, 26–37 (2011)CrossRefGoogle Scholar
  31. Sarkar, T.K., Taaghol, A.: Near-field to near/far-field transformation for arbitrary near-field geometry utilizing an equivalent electric current and MoM. IEEE Trans. Antennas Propag. 47, 566–573 (1999)CrossRefGoogle Scholar
  32. Sarkis, R., Craeye, C.: Circular array of wideband 3D Vivaldi antennas. In: 2010 URSI International Symposium on Electromagnetic Theory (EMTS), pp. 792–794Google Scholar
  33. Serhir, M., Besnier, P., Drissi, M.: Antenna modeling based on a multiple spherical wave expansion method: application to an antenna array. IEEE Trans. Antennas Propag. 58, 51–58 (2010)Google Scholar
  34. Slob, E.C., Fokkema, J.: Coupling effects of two electric dipoles on an interface. Radio Sci. 37, 1073 (2002). doi: 10.1029/2001RS2529 CrossRefGoogle Scholar
  35. Slob, E., Sato, M., Olhoeft, G.: Surface and borehole ground-penetrating-radar developments. Geophysics 75, A103–A120 (2010)Google Scholar
  36. Soldovieri, F., Lopera, O., Lambot, S.: Combination of advanced inversion techniques for an accurate target localization via GPR for demining applications. IEEE Trans. Geosci. Remote Sens. 49, 451–461 (2011)CrossRefGoogle Scholar
  37. Stogryn, A.: Brightness temperature of a vertically structured medium. Radio Sci. 5, 1397–1406 (1970)CrossRefGoogle Scholar
  38. Tran, A.P., Warren, C., André, F., Giannopoulos, A., Lambot, S.: Numerical evaluation of a full-wave antenna model for near-field applications. Near Surf. Geophys. (2013)Google Scholar
  39. Tran, A.P., André, F., Lambot, S.: Validation of near-field ground-penetrating radar modeling using full-wave inversion for soil moisture estimation. IEEE Trans. Geosci. Remote Sens. 52, 5483–5497 (2014)CrossRefGoogle Scholar
  40. Tran, A.P., Bogaert,P., Wiaux F., Vanclooster M., Lambot, S.: High-resolution space-time quantification of soil moisture along a hillslope using joint analysis of ground penetrating radar and frequency domain reflectometry data. J. Hydrol. 523, 252–261 (2015)Google Scholar
  41. Venkatarayalu, N.V., Gan, Y.B., Lee, R., Li, L.W.: Application of hybrid FETD-FDTD method in the modeling and analysis of antennas. IEEE Trans. Antennas Propag. 56, 3068–3072 (2008)CrossRefGoogle Scholar
  42. Warren, C., Giannopoulos, A.: Creating finite-difference time-domain models of commecrical ground-penetrating radar antennas using Taguchi’s optimization method. Geophysics 76, G37–G47 (2011)CrossRefGoogle Scholar
  43. Wiaux, F., Cornelis, J.T., Cao, W., Vanclooster, M., Van Oost, K.: Combined effect of geomorphic and pedogenic processes on the distribution of soil organic carbon quality along an eroding hillslope on loess soil. Geoderma 216, 36–47 (2014) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Earth and Life Institute, Environmental SciencesUniversité Catholique de Louvain (UCL)Louvain-la-NeuveBelgium

Personalised recommendations