Advertisement

Methods for the Electromagnetic Forward Scattering by Buried Objects

  • Cristina PontiEmail author
Chapter
Part of the Springer Transactions in Civil and Environmental Engineering book series (STICEE)

Abstract

Methods developed to solve forward electromagnetic scattering by buried objects are useful tools for interpreting data from Ground Penetrating Radar responses. Time-domain methods, as Finite-Difference Time Domain or space-time integral equations, are well established tools in the modeling impulse Ground Penetrating Radar systems. Integral equation methods, when solved with Method of Moments discretization, lead to dense linear system. Therefore, the implementation of novel approaches approximating the integral equation via series expansions with lower computational complexity is called for. Analytical techniques have the advantage to be accurate and fast, as the geometry of the scattering problem is taken into account by an expansion of the fields in terms of suitable basis functions.

Keywords

Line Source Ground Penetrate Radar Scattered Field Absorb Boundary Condition Cylindrical Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahmed, S., Naqvi, Q.A.: Electromagnetic scattering from a perfect electromagnetic conductor cylinder buried in a dielectric half-space. Prog. Electromagn. Res. 78, 25–38 (2008)CrossRefGoogle Scholar
  2. Altuncu, Y., Yapar, A., Akduman, I.: On the scattering of electromagnetic waves by bodies buried in a half-space with locally rough interface. IEEE Trans. Geosci. Remote Sens. 44(6), 1435–1443 (2006)Google Scholar
  3. Balanis, C.A.: Advanced Engineering Electromagnetics. Wiley, New York (1989)Google Scholar
  4. Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. IEEE Trans. Electromagn. Compat. 114, 185–200 (1994)zbMATHMathSciNetGoogle Scholar
  5. Borghi, R., Santarsiero, M., Frezza, F., Schettini, G.: Plane-wave scattering by a dielectric circular cylinder parallel to a general reflecting flat surface. J. Opt. Soc. Am. A 14, 1500–1504 (1997)CrossRefMathSciNetGoogle Scholar
  6. Bourlier, C., Pinel, N., Kubické, G.: Method of Moments for 2D Scattering Problems. Basic Concepts and Applications. UK: Focus Series in Waves, Ed. Wiley-ISTE, London (2013)Google Scholar
  7. Bowman, J.J., Senior, T.B., Uslenghi, P.L.E.: Electromagnetic and acoustic scattering by simple shapes. Hemisphere, New York (1987)Google Scholar
  8. Budko, N.V., van den Berg, P.M.: Characterization of a two-dimensional subsurface object with an effective scattering model. IEEE Trans. Geosci. Remote Sens. 37, 2585–2896 (1999)CrossRefGoogle Scholar
  9. Butler, C.M., Xu, X.-B., Glisson, A.W.: Current induced on a conducting cylinder located near the planar interface between two semi-infinite half-spaces. IEEE Trans. Antennas Propag. 33(6), 616–624 (1985)CrossRefGoogle Scholar
  10. Cincotti, G., Gori, F., Santarsiero, M., Frezza, F., Furnò, F., Schettini, G.: Plane wave expansion of cylindrical functions. Opt. Comm. 95, 192–198 (1993)CrossRefGoogle Scholar
  11. Cottis, P.G., Kanellopoulos, J.D.: Scattering of electromagnetic waves from cylindrical inhomogeneities embedded inside a lossy medium with a sinusoidal surface. J. Electromagn. Waves Appl. 6, 445–458 (1992)CrossRefGoogle Scholar
  12. Crocco, L., D’Urso, M., Isernia, T.: The contrast source-extended born model for 2D subsurface scattering problems. Prog. Electromagnet. Res. B 17, 343–359 (2009)CrossRefGoogle Scholar
  13. D’Yakonov, B.P.: The diffraction of electromagnetic waves by a circular cylinder in a homogeneous half-space. Bull. Acad. U.S.S.R. 9, 950–955 (1959)Google Scholar
  14. Daniels, D.J.: Ground Penetrating Radar, 2nd edn. Institution of Engineering and Technology, London, UK (2004)Google Scholar
  15. Di Vico, M., Frezza, F., Pajewski, L., Schettini, G.: Scattering by a finite set of perfectly conducting cylinders buried in a dielectric half-space. IEEE Trans. Antennas Propag. 53(2), 719–727 (2005a)CrossRefGoogle Scholar
  16. Di Vico, M., Frezza, F., Pajewski, L., Schettini, G.: Scattering by buried dielectric cylindrical structures. Radio Sci. 40, RS6S18 (2005b)Google Scholar
  17. Diamanti, N., Giannopoulos, A.: Implementation of ADI-FDTD subgrids in ground penetrating radar FDTD models. J. Appl. Geophys. 67, 309–317 (2009)CrossRefGoogle Scholar
  18. Diamanti, N., Giannopoulos, A.: Employing ADI-FDTD subgrids for GPR numerical modeling and their application to study ring separation in brick masonry arch bridges. Near Surf. Geophys. 9, 245–256 (2011)CrossRefGoogle Scholar
  19. Elsherbeni, A.Z., Kishk, A.A.: Modeling of cylindrical objects by circular dielectric and conducting cylinders. IEEE Trans. Antennas Propag. 40, 96–99 (1992)CrossRefGoogle Scholar
  20. Fiaz, M.A., Frezza, F., Pajewski, L., Ponti, C., Schettini, G.: Scattering by a circular cylinder buried under a rough surface: the cylindrical wave approach. IEEE Trans. Antennas Propag. 60(6), 2834–2842 (2012)CrossRefMathSciNetGoogle Scholar
  21. Fiaz, M.A., Frezza, F., Pajewski, L., Ponti, C., Schettini, G.: Asymptotic solution for the scattered field by cylindrical objects buried beneath a slightly rough surface. Near Surf. Geophys. 11(6), 177–183 (2013)Google Scholar
  22. Fiaz, M.A., Frezza, F., Ponti, C., Schettini, G.: Electromagnetic scattering by a circular cylinder buried below a slightly rough Gaussian surface. J. Opt. Soc. Am. A 31, 26–34 (2014)CrossRefGoogle Scholar
  23. Frezza, F., Pajewski, L., Ponti, C., Schettini, G.: Scattering by perfectly-conducting circular cylinders buried in a dielectric slab through the cylindrical wave approach. IEEE Trans. Antennas Propag. 57(4), 1208–1217 (2009)CrossRefGoogle Scholar
  24. Frezza, F., Pajewski, L., Ponti, C., Schettini, G.: Scattering by dielectric circular cylinders in a dielectric slab. J. Opt. Soc. Am. A 27(4), 687–695 (2010)CrossRefGoogle Scholar
  25. Frezza, F., Pajewski, L., Ponti, C., Schettini, G.: Line-source scattering by buried perfectly-conducting circular cylinders. Int. J. Antennas Propag. 2012, 7 p (2012)Google Scholar
  26. Frezza, F., Pajewski, L., Ponti, C., Schettini, G., Tedeschi, N.: Electromagnetic scattering by a metallic cylinder buried in a lossy medium with the cylindrical wave approach. Geosci. Remote Sens. Lett. 10(1), 179–183 (2013a)CrossRefGoogle Scholar
  27. Frezza, F., Pajewski, L., Ponti, C., Schettini, G.: Through-wall electromagnetic scattering by N conducting cylinders. J. Opt. Soc. Am. A 30, 1632–1639 (2013b)CrossRefGoogle Scholar
  28. Frezza, F., Pajewski, L., Ponti, C., Schettini, G., Tedeschi, N.: Electromagnetic scattering by a metallic cylinder buried in a lossy medium with the cylindrical wave approach. IEEE Geosci. Remote Sens. Lett. 10(1), 179–183 (2013c)CrossRefGoogle Scholar
  29. Giannopoulos, A.: Modelling ground penetrating radar by GprMax. Constr. Build. Mater. 19(10), 755–762 (2005)CrossRefGoogle Scholar
  30. Hongo, K., Hamamura, A.: Asympotitic solutions for the scattered field of a plane wave by a cylindrical obstacle buried in a dielectric half-space. IEEE Trans. Antennas Propag. 34(11), 1306–1312 (1986)CrossRefGoogle Scholar
  31. Howard, A.Q.: The electromagnetic fields of a subterranean cylindrical inhomogeneity excited by a line source. Geophysics 37, 975–984 (1972)CrossRefGoogle Scholar
  32. Isernia, T., Crocco, L., D’Urso, M.: New tools and series for forward and inverse scattering problems in lossy media. IEEE Geosci. Remote Sens. Lett. 1, 331–337 (2004)CrossRefGoogle Scholar
  33. Jia, H., Yasumoto, K.: Scatteration and absorption characteristics of multilayered gratings embedded in a dielectric slab. Int. J. Infrared Millimeter Wave 26(8), 1111–1126 (2005)CrossRefGoogle Scholar
  34. Jol, H.M.: Ground Penetrating Radar: Theory and Applications. Elsevier Science Ltd, Amsterdam (2008)Google Scholar
  35. Kunz, K., Luebbers, L.J.: The Finite Difference Time Domain Method for Electromagnetics. CRC Press, London (1993)Google Scholar
  36. Kuo, C.H., Moghaddam, M.: Electromagnetic scattering from a buried cylinder in layered media with rough interfaces. IEEE Trans. Antennas Propag. 54(8), 2392–2401 (2002)CrossRefMathSciNetGoogle Scholar
  37. Lambot, S., André, F.: Full-wave modeling of near-field radar data for planar layered media reconstruction. Trans. Geosci. Remote Sens. 52(5), 2295–2303 (2014)Google Scholar
  38. Lawrence, D.E., Sarabandi, K.: Electromagnetic scattering from a dielectric cylinder buried beneath a slightly rough surface. IEEE Trans. Antennas Propag. 50(10), 1368–1376 (2002)CrossRefMathSciNetGoogle Scholar
  39. Lee, S.C.: Light scattering by closely spaced parallel cylinders embedded in a finite dielectric slab. J. Opt. Soc. Am. A 16(6), 1350–1361 (1999)CrossRefGoogle Scholar
  40. Ludwig, A.C.: Wire grid modeling of surfaces. IEEE Trans. Antennas Propag. AP-35(9), 1045–1048 (1987)CrossRefMathSciNetGoogle Scholar
  41. Mahmoud, S.F., Ali, S.M., Wait, J.R.: Electromagnetic scattering from a buried cylindrical inhomogeneity inside a lossy earth. Radio Sci. 16(6), 1285–1298 (1981)CrossRefGoogle Scholar
  42. Michalski, K.A., Zheng, D.: Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, part I: theory. IEEE Trans. Antennas Propag. 38(3), 335–344 (1990a)CrossRefGoogle Scholar
  43. Michalski, K.A., Zheng, D.: Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, part II: implementation and results for contiguous half-spaces. IEEE Trans. Antennas Propag. 38(3), 345–352 (1990b)CrossRefGoogle Scholar
  44. Mur, G.: Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations. IEEE Trans. Electromagn. Compat. 23(4), 377–383 (1981)CrossRefGoogle Scholar
  45. Naqvi, Q.A., Rizvi, A.A.: Scattering from a cylindrical object buried in a geometry with parallel plane interfaces. Prog. Electromagn. Res. 27, 19–35 (2000)CrossRefGoogle Scholar
  46. Naqvi, Q.A., Rizvi, A.A., Ashraf, M.A.: Asymptotic solutions for the scattered field of a plane wave by a cylindrical obstacle buried in a grounded dielectric layer. Prog. Electromagn. Res. 20, 249–262 (1998)CrossRefGoogle Scholar
  47. Naqvi, Q.A., Rizvi, A.A., Yaqoob, Z.: Asymptotic solutions for the scattered field of plane wave by a cylindrical obstacle buried in a dielectric halfspace. IEEE Trans. Antennas Propag. 48(5), 846–848 (2000a)CrossRefGoogle Scholar
  48. Naqvi, Q.A., Rizvi, A.A., Yaqoob, Z.: Scattering of electromagnetic waves from a deeply buried circular cylinder. Prog. Electromagn. Res. 27, 37–59 (2000b)CrossRefGoogle Scholar
  49. Ogunade, S.O.: Electromagnetic response of an embedded cylinder for line current excitation. Geophysics 46, 45–52 (1981)CrossRefGoogle Scholar
  50. Paknys, R.: Reflection and transmission by reinforced concrete-numerical and asymptotic analysis. IEEE Trans. Antennas Propag. 51(10), 2852–2861 (2003)CrossRefMathSciNetGoogle Scholar
  51. Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite Difference Time Domain Method. Artech House, Boston (2000)Google Scholar
  52. Zhuck, N.P., Yarovoy, A.G.: Two-dimensional scattering from an inhomogeneous dielectric cylinder embedded in a stratified medium: case of TM polarization. IEEE Trans. Antennas Propag. 42(1), 16–21 (1994)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of EngineeringRoma Tre UniversityRomeItaly

Personalised recommendations