Effective GPR Inspection Procedures for Construction Materials and Structures

  • Lech KrysińskiEmail author
  • Johannes Hugenschmidt
Part of the Springer Transactions in Civil and Environmental Engineering book series (STICEE)


This paper is a review of methods related to assessment of construction details and material properties using of GPR. The focus is on recent research activities of the Project “Innovative procedures for effective GPR inspection of construction materials and structures” (project 2.4) in COST Action TU1208. The electromagnetic properties of investigated media are interesting because they reflect physical features of the materials (e.g. their composition), enabling a non-invasive inspection of their condition. Moreover, the assessment of electromagnetic properties (e.g. wave velocity) is an inherent part of any GPR structural study necessary for correct depth determination or amplitude interpretation. As a result of the review major directions of research are highlighted and some benefits and limits of different approaches are described.


Asphalt Mixture Asphalt Binder Electromagnetic Property Asphalt Pavement Void Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the COST Action TU1208 “Civil Engineering Applications of Ground Penetrating Radar”, supporting this work.


  1. Al-Qadi I.L., Leng Z., Larkin A.: In-Place Hot-Mix Asphalt Density Estimation Using Ground-Penetrating Radar. Technical Report of Research, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, ICT Report No. 11-096, Dec 2011Google Scholar
  2. Benedetto, A.: A three dimensional approach for tracking cracks in bridges using GPR. J. Appl. Geophys. 97, 37–44 (2013)CrossRefGoogle Scholar
  3. Benedetto, A., Pensa, S.: Indirect diagnosis of pavement structural damages using surface GPR reflection techniques. J. Appl. Geophys. 62, 107–123 (2007)CrossRefGoogle Scholar
  4. Benedetto, F., Tosti, F.: GPR spectral analysis for clay content evaluation by the frequency shift method. J. Appl. Geophys. 97, 89–96 (2013a)CrossRefGoogle Scholar
  5. Benedetto, A., Tosti, F.: Inferring bearing ratio of unbound materials from dielectric properties using GPR: the case of runway safety areas. Airfield Highw. Pavement, pp. 1336–1347 (2013b). doi: 10.1061/9780784413005.113
  6. Benedetto, A., D’Amico, F., Fattorini F.: Measurement of moisture under road pavement: a new approach based on GPR signal processing in the frequency domain. International Workshop on Advanced Ground Penetrating Radar, Granada (ES) (2009)Google Scholar
  7. Benedetto, A., Benedetto, F., Tosti, F.: GPR applications for geotechnical stability of transportation infrastructures. Nondestr. Testing Eval. 27(3), 253–262 (2012)CrossRefGoogle Scholar
  8. Benedetto, A., Tosti, F., Ortuani, B., Giudici, M., Mele, M.: Soil moisture mapping using GPR for pavement applications. 7th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), Nantes (2–5 July 2013), pp. 1–5 (2013a). ISBN 978-1-4799-0937-7, doi:  10.1109/IWAGPR.2013.6601550
  9. Benedetto, A., D’Amico, F., Tosti, F.: GPR-based evaluation of strength properties of unbound pavement material from electrical characteristics. Geophysical Research Abstracts 15, EGU2013-3648, European Geosciences Union (EGU) General Assembly 2013, Wien (2013b)Google Scholar
  10. Breysse D. (ed.): Non-destructive Assessment of Concrete Structures: Reliability and Limits of Single and Combined Techniques, Springer, pp. 63–71, (2012). ISBN 978-94-007-2735-9Google Scholar
  11. Cassidy, N.J.: Electrical and magnetic properties of rocks, soils and fluids. In: Jol, H.M. (ed.) Ground Penetrating Radar: Theory and Applications, pp. 41–72. Elsevier, Amsterdam (2009)CrossRefGoogle Scholar
  12. Dérobert, X., Villain, G., Cortas, R., Chazelas, J.L.: EM characterization of hydraulic concretes in the GPR frequency-band using a quadratic experimental design. 7th International Symposium NDT-CE Proceedings, Nantes, July (2009)Google Scholar
  13. Fauchard, C., Li, B., Laguerre, L., Héritier, B., Benjelloun, N., Kadi, M.: Determination of the compaction of hot mixasphalt using high-frequency electromagnetic methods. NDT&E Int. 60, 40–51 (2013)CrossRefGoogle Scholar
  14. Ferrieres, X., Klysz, G., Mazet, P., Balayssac, J.-P.: Evaluation of the concrete electromagnetic properties by using radar measurements in a context of building sustainability. Comput. Phys. Commun. 180(8), 1277–1281 (2009)CrossRefGoogle Scholar
  15. Gołębiowski, T.: Zastosowanie metody georadarowej do detekcji i monitoringu obiektów o stochastycznym rozkładzie w ośrodku geologicznym “Application of the GPR Method for Detection and Monitoring of Objects with Stochastical Distribution in the Geological Medium”. AGH University of Science and Technology Press, Kraków, p. 257 (2012). ISBN 978-83-7464-449-5Google Scholar
  16. Hugenschmidt, J.: GPR for road engineering. Mater. Struct. 31(207), 192–194 (1998)CrossRefGoogle Scholar
  17. Hugenschmidt, J.: Concrete bridge inspection with a mobile GPR system. Constr. Build. Mater. 16(3), 147–154 (2002)CrossRefGoogle Scholar
  18. Hugenschmidt, J.: Multi-Offset-Analysis for man-made structures. In: 8th International Conference on Ground Penetrating Radar, Gold Coast, Australia (2000)Google Scholar
  19. Hugenschmidt, J., Loser, R.: Detection of chlorides and moisture in concrete structures with ground penetrating radar. Mater. Struct. 41, 785–792 (2008)CrossRefGoogle Scholar
  20. Hugenschmidt, J., Kalogeropoulos, A., Soldovieri, F., Prisco, G.: Processing strategies for high-resolution GPR concrete inspections. NDT&E Int. 43(4), 334–342 (2010)CrossRefGoogle Scholar
  21. Hugenschmidt, J., Partl, M., de Witte, H.: GPR inspection of a mountain motorway in Switzerland. J. Appl. Geophys. 40, 95–104 (1998)CrossRefGoogle Scholar
  22. Ihamouten, A., Chahine, K., Baltazart, V., Villain, G., Dérobert, X.: On variants of the frequency power law for the electromagnetic characterization of hydraulic concrete. IEEE Trans. Inst. Meas. 60(11), 3658–3668 (2011)CrossRefGoogle Scholar
  23. Ihamouten, A., Villain, G., Dérobert, X.: Complex permittivity frequency variations from multi-offset GPR data: hydraulic concrete characterization. IEEE Trans. Instrum. Meas. 61(6), 1636–1648 (2012)CrossRefGoogle Scholar
  24. Jackson, J.D.: Classical Electrodynamics, 2nd edn. Wiley, Hoboken, New Jersey (1975)zbMATHGoogle Scholar
  25. Kalogeropoulos, A., Kruk, J., Hugenschmidt, J., Bikowski, J., Brühwiler, E.: Full-waveform GPR inversion to assess chloride gradients in concrete. NDT&E Int. 57, 74–84 (2013)CrossRefGoogle Scholar
  26. Klysz, G., Balayssac, J.-P.: Determination of volumetric water content of concrete using ground-penetrating radar. Cem. Concr. Res. 37(8), 1164–1171 (2007)CrossRefGoogle Scholar
  27. Klysz, G., Ferrières, X., Balayssac, J.-P., Laurens, S.: Simulation of direct wave propagation by numerical FDTD for a GPR coupled antenna. NDT&E Int. 39, 338–347 (2006)CrossRefGoogle Scholar
  28. Krysiński L.: Use of impulse GPR for laboratory determination of road material permittivity in core samples. In: Geophysical Research Abstracts, Vol. 15, EGU2013-6779, European Geosciences Union (EGU) General Assembly 2013, Wien, (2013)Google Scholar
  29. Krysiński, L., Sudyka, J.: Typology of reflections in the assessment of the interlayer bonding condition of the bituminous pavement by the use of an impulse high-frequency ground-penetrating radar. Nondestr. Testing Eval. 27(3), 219–227 (2012a). doi: 10.1080/10589759.2012.674525 CrossRefGoogle Scholar
  30. Krysiński L., Sudyka J.: Ocena wpływu zagęszczenia warstwy asfaltowej na uzyskiwane wartości stałej dielektrycznej—research report, in Polish, Assessment of Asphalt Layer Compaction Influence on Resulting Values of Dielectric Constant, Pavement Diagnostic Division, Road and Bridge Research Institute, Warsaw, Nov (2012b)Google Scholar
  31. Krysiński, L., Sudyka, J.: GPR abilities in investigation of the pavement transversal cracks. J. App. Geophys. 97, 27–36 (2013)CrossRefGoogle Scholar
  32. Laurens, S., Balayssac, J.-P., Rhazi, J., Arliguie, G.: Influence of concrete relative humidity on the amplitude of Ground-Penetrating Radar (GPR) signal. Mater. Struct. 35(248), 198–203 (2002)CrossRefGoogle Scholar
  33. Laurens, S., Balayssac, J.-P., Rhazi, J., Klysz, G., Arliguie, G.: Non destructive evaluation of concrete moisture by GPR: experimental study and direct modelling. Mater. Struct. 38(283), 827–832 (2005)CrossRefGoogle Scholar
  34. Liu, L., Guo T.: Dielectric property of asphalt pavement specimens in dry, water-saturated, and frozen conditions. In: Proceedings of SPIE 4758, Ninth International Conference on Ground Penetrating Radar, p. 410, April 15, (2002). doi: 10.1117/12.462222
  35. Ortuani, B., Benedetto, A., Giudici, M., Mele, M., Tosti, F.: A Non-invasive approach to monitor variability of soil water content with electromagnetic methods. Procedia Environ. Sci. 19, 446–455 (2013)CrossRefGoogle Scholar
  36. Patriarca, C., Tosti, F., Velds, C., Benedetto, A., Lambot, S., Slob, E.: Frequency dependent electric properties of homogeneous multi-phase lossy media in the, ground-penetrating radar frequency range. J. Appl. Geophys. 97, 81–88 (2013)CrossRefGoogle Scholar
  37. Plati, C., Loizos, A.: Using ground-penetrating radar for assessing the structural needs of asphalt pavements. Nondestr. Testing Eval. 27(3), 273–284 (2012)CrossRefGoogle Scholar
  38. Plati, C., Loizos, A.: Estimation of in-situ density and moisture content in HMA pavements based on GPR trace reflection amplitude using different frequencies. J. Appl. Geophys. 97, 3–10 (2013)CrossRefGoogle Scholar
  39. Plati, C., Georgiou, P., Loizos, A. A comprehensive approach for the assessment of in-situ pavement density using GPR technique. In: Geophysical Research Abstracts 15, EGU2013-11094, European Geosciences Union (EGU) General Assembly 2013, Wien, (2013)Google Scholar
  40. Poikajärvi J., Peisa K., Herronen T., Aursand P.O., Maijala P., Narbro A.: GPR in road investigations—equipment tests and quality assurance of new asphalt pavement. Nondestr. Testing and Eva. 27(3), 293 (2012)Google Scholar
  41. Roddis, W.M., Maser, K., Gisi, A.J.: Radar Pavement Thickness Evaluations for Varying Base Conditions, Transportation Research Record 1355. National Academy Press, Washington D. C., pp, 90–98 (1992)Google Scholar
  42. Roimela, P.: Päällystetutka tiiviyden laadunvalvonnassa (in Finnish, The Use of Pavement Radar in Quality Control of Bituminous Pavement). Tielaitoksen selvityksiä, 6/1999, TIEL 3200499, Tielaitos Konsultointi, Rovaniemi, (1999). ISBN 951-726-496-8Google Scholar
  43. Saarenketo, T.: NDT Transportation. In: Jol, H.M. (ed.) Ground Penetrating Radar: Theory and Applications, pp. 395–444. Elsevier, Amsterdam (2009)Google Scholar
  44. Sbartaï, Z.M., Laurens, S., Balayssac, J.-P., Ballivy, G., Arliguie, G.: Effect of concrete moisture on radar signal amplitude. ACI Mater. J. 103(6), 419–426 (2006a)Google Scholar
  45. Sbartaï, M., Laurens, S., Balayssac, J.-P., Ballivy, G., Arliguie, G.: Ability of the direct wave of radar ground-coupled antenna for NDT of concrete structures. NDT&E Int. 39(5), 400–407 (2006b)CrossRefGoogle Scholar
  46. Sbartaï, Z.M., Laurens, S., Viriyametanont, K., Balayssac, J.-P., Arliguie, G.: Non-destructive evaluation of concrete physical condition using radar and artificial neural networks. Constr. Build. Mater. 23(2), 837–845 (2009)CrossRefGoogle Scholar
  47. Sebesta, S., Sculion, T.: Application of infrared imaging and ground penetrating radar for detecting segregation in hot-mix asphalt overlays. Transp. Res. Board: J. Transp. Res. Board 1861, 37–43 (2002)Google Scholar
  48. Solimene, R., Soldovieri, F., Prisco, G., Pierri, R.: Three-dimensional microwave tomography by a 2-D slice-based reconstruction algorithm. IEEE Geosci. Remote Sens. Lett. 4(4), 556–560 (2007)CrossRefGoogle Scholar
  49. Sudyka, J., Krysiński, L.: Radar technique application in structural analysis and identification of interlayer bounding. Int. J. Pavement Res. Technol. 4(3), 176–184 (2011)Google Scholar
  50. Sudyka, J., Krysiński, L., Jaskuła, P., Mechowski, T., Harasim, P.: Radar technique in application of interlayer identification connections. In: 5th International Conference Bituminous Mixtures and Pavements, Thessaloniki, pp, 1449–1459 1–3 June (2011)Google Scholar
  51. Tahmoressi, M., Head, D., Saenz, T., Rebala, S.: Material Transfer Device Showcase in El Paso, Texas. Research report DHT-47, Texas Department of Transportation, El Paso, Texas (1999)Google Scholar
  52. Tosti, F., Benedetto, A., Calvi, A.: An Effective Approach for Road Maintenance through the Simulation of GPR-Based Pavements Damage Inspection. IJPC—International Journal of Pavements Conference, São Paulo, Brazil, (2013a), Paper 124–1 Google Scholar
  53. Tosti, F., Patriarca, C., Slob, E., Benedetto, A., Lambot, S.: Clay content evaluation in soils through GPR signal processing. J. Appl. Geophys. 97, 69–80 (2013b)CrossRefGoogle Scholar
  54. Ulaby, F., Bengal, T., Dobson, M., East, J., Garvin, J., Evans, D.: Microwave dielectric properties of dry rocks. IEEE Trans. Geosci. Remote Sens. 28(3), 325–336 (1990)CrossRefGoogle Scholar
  55. Villain, G., Ihamouten, A., Dérobert, X., Sedran, T., Burban, O., Coffec, O., Dauvergne, M., Alexandre, J., Cottineau, L.M., Thiéry, M.: Adapted mix design and characterization for non destructive assessment of concrete. International Conference on Marine Environmental Damage to Atl. Coastal and History Structure Proceedings, La Rochelle, May (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Road and Bridge Research InstituteWarsawPoland
  2. 2.Rapperswil University of Applied ScienceRapperswilSwitzerland

Personalised recommendations