Inspection Procedures for Effective GPR Surveying of Buildings

  • Vega Pérez-GraciaEmail author
  • Mercedes Solla
Part of the Springer Transactions in Civil and Environmental Engineering book series (STICEE)


A considerable number of studies about GPR applications in building inspection can be found in the literature. New advances in software development, laboratory tests under controlled conditions and numerous cases studies are representative works in this field of knowledge. Some applications are focused on rebar detection, on concrete building assessment, and in modern masonry structures. However, the majority of the works are focused on cultural heritage buildings evaluations, presenting interesting and diverse cases studies. Remarkable results can be found about cracks detection and inspection of masonry walls and columns. Software development has been focused, in many cases, to the enhancement of radar images to facilitate data interpretation. In other cases, synthetic models have been developed to compare results with GPR images from complex scenarios. Evaluations of quantitative properties of constructive materials have been developed based on laboratory tests. Other special works have been also based on laboratory tests: damp measures, concrete degradation due to corrosion, and damages due to tree roots are tested in laboratory specimens under controlled conditions. Although it is a promising subject, few studies have been applied in buildings, revealing the difficult inherent to these complex scenarios. Open issues have been defined as a final conclusion based on the revision of different works. Developments of radar imaging, models and new applications seem to be the most relevant future lines in the GPR building inspection, probably based in a proper and complete definition of casuistic and requirements in structures evaluations.


Cultural Heritage Concrete Beam Radar Data Masonry Building Constructive Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the COST Action TU1208 “Civil Engineering Applications of Ground Penetrating Radar”, supporting this work. This work was also partially supported by the Spanish Government and the European Comission with FEDER funds, through the research projects CGL-2008-00869/BTE and CGL2011-23621. Authors are highly grateful to the support of Dr. A. Massa and Dr. I. Catapano, participants in the COST Action TU1208 in the Work Group 2, who provide us information about their research activities and interesting suggestions about the actual open issues in the GPR building inspection field.


  1. Abbas, A.M., Kamei, H., Helal, A., Atya, M.A., Shaaban, F.A.: Contribution of geophysics to outlining the foundation structure of the Islamic Museum, Cairo. Egypt. Archaeol. Prospection 12(3), 167–176 (2005)CrossRefGoogle Scholar
  2. Bala, D.C., Garg, R.D., Jain, S.S.: Rebar detection using GPR: an emerging non-destructive QC approach. Int. J. Eng. Res. Appl. 1(4), 2111–2117 (2011)Google Scholar
  3. Barrile, V., Pucinotti, R.: Application of radar technology to reinforced concrete structures: a case study. NDT E Int. 38, 596–604 (2005)CrossRefGoogle Scholar
  4. Benedetti, M., Donelli, M., Massa, A.: Multicrack detection in two-dimensional structures by means of GA-based strategies. IEEE Trans. Antennas Propag. 55(1), 205–215 (2007a)CrossRefGoogle Scholar
  5. Benedetti, M., Franceschini, G., Azaro, R., Massa, A.: A numerical assessment of the reconstruction effectiveness of the integrated GA-based multicrack strategy. IEEE Antennas Wirel. Propag. Lett. 6, 271–274 (2007b)CrossRefGoogle Scholar
  6. Benedetti, M., Lesselier, D., Lambert, M., Massa, A.: Multiple shapes reconstruction by means of multi-region level sets. IEEE Trans. Geosci. Remote Sens. 48(5), 2330–2342 (2010)CrossRefGoogle Scholar
  7. Benedetti, M., Donelli, M., Lesselier, D., Massa, A.: A two-step inverse scattering procedure for the qualitative imaging of homogeneous cracks in known host media—preliminary results. IEEE Antennas Wirel. Propag. Lett. 6, 592–595 (2007c)CrossRefGoogle Scholar
  8. Binda, L., Saisi, A., Tiraboschi, C.: Investigation procedures for the diagnosis of historic masonries. Constr. Build. Mater. 14, 199–233 (2000)CrossRefGoogle Scholar
  9. Binda, L., Saisi, A., Tiraboschi, C., Valle, S., Colla, C., Forde, M.: Application of sonic and radar tests on the piers and walls of the Cathedral of Noto. Constr. Build. Mater. 17, 613–627 (2003)CrossRefGoogle Scholar
  10. Binda, L., Cardani, G., Zanzi, L.: Nondestructive testing evaluation of drying process in flooded full-scale masonry walls. J. Perform. Constructed Facil. 24, 473–483 (2010)CrossRefGoogle Scholar
  11. Binda, L., Zanzi, L., Lualdi, M., Condoleo, P.: The use of georadar to assess damage to a masonry Bell Tower in Cremona, Italy. NDT E Int. 38, 171–179 (2005)CrossRefGoogle Scholar
  12. Binda, L., Saisi, A.: Application of NDTs to the diagnosis of historic structures. In: Proceedings of the NDTCE’09, Non-Destructive Testing in Civil Engineering, Nantes, France, 30th June–3rd July (2009)Google Scholar
  13. Booth, A.D., Clark, R.A., Hamilton, K., Murray, T.: Multi-offset ground penetrating radar methods to image buried foundations of a medieval town wall, Great Yarmouth, UK. Archaeol. Prospection 17(2), 103–116 (2010)Google Scholar
  14. Bourdi, T., Boone, F., Rhazi, J.E., Ballivy, G.: Use of Jonscher model for estimating the thickness of a concrete slab by technical GPR. Prog. Electromagnet. Res. 28, 89–99 (2013)CrossRefGoogle Scholar
  15. Caorsi, S., Massa, A., Pastorino, M.: A crack identification microwave procedure based on a genetic algorithm for nondestructive testing. IEEE Trans. Antennas Propag. 49(12), 1812–1820 (2001)CrossRefGoogle Scholar
  16. Caorsi, S., Massa, A., Pastorino, M., Righini, F.: Crack detection in lossy two-dimensional structures by means of a microwave imaging approach. Int. J. Appl. Electromagnet. Mech. 11(4), 233–244 (2000)Google Scholar
  17. Cassidy, N.J., Eddies, R., Styles, P., Brightwell, S., Dods, S.: Combining ground-penetrating radar and ultrasonic survey techniques: new tools for old problems? First Break 29(8), 85–91 (2011)Google Scholar
  18. Cataldo, R., De Donno, A., De Nunzio, G., Leucci, G., Nuzzo, L., Siviero, S.: Integrated methods for analysis of deterioration of cultural heritage: the crypt of “Cattedrale di Otranto. J. Cult. Heritage 6, 29–38 (2005)CrossRefGoogle Scholar
  19. Catapano, I., Di Napoli, R., Soldovieri, F., Bavusi, M., Loperte, A., Dumoulin, J.: Structural monitoring via microwave tomography-enhanced GPR: the montagnole test site. J. Geophys. Eng. 9(4), 100–107 (2012)CrossRefGoogle Scholar
  20. Catapano, I., Crocco, L., Isernia, T.: A feasibility study of a quantitative microwave tomography technique for structural monitoring. Near Surf. Geophys. 8(5), 389–395 (2010)Google Scholar
  21. Chang, C.W., Lin, C.H., Lien, H.S.: Measurement radius of reinforcing steel bar in concrete using digital image GPR. Constr. Build. Mater. 23(2), 1057–1063 (2009)CrossRefGoogle Scholar
  22. Crocco, L., Soldovieri, F.: GPR prospecting in a layered medium via microwave tomography. Ann. Geophys. 46(3), 559–572 (2003)Google Scholar
  23. Czaja, K.: Application of electromagnetic field modeling in GPR investigation on an historic tenement. Geol. Geophys. Environ. 38(4), 395–410 (2012)CrossRefGoogle Scholar
  24. Dabas, M., Camerlynck, C., Freixas, P., Camps, I.: Simultaneous use of electrostatic quadrupole and GPR in urban context: investigation of the basement of the Cathedral of Girona (Catalunya, Spain). Geophysics 65(2), 526–532 (2000)CrossRefGoogle Scholar
  25. Dérobert, X., Iaquinta, J., Klyszc, G., Balayssac, J.P.: Use of capacitive and GPR techniques for the non-destructive evaluation of cover concrete. NDT E Int. 41(1), 44–52 (2008)CrossRefGoogle Scholar
  26. Diamanti, N., Giannopoulos, A., Forde, M.C.: Numerical modelling and experimental verification of GPR to investigate ring separation in brick masonry arch bridges. NDT E Int. 41, 354–363 (2008)CrossRefGoogle Scholar
  27. Elawadi, E., El-Qady, G., Nigm, A., Shaaban, F., Ushijima, K.: Integrated geophysical survey for site investigation at a New Dwelling Area, Egypt. J. Environ. Eng. Geophys. 11(4), 249–259 (2006)CrossRefGoogle Scholar
  28. Ferrieres, X., Klysz, G., Mazet, P., Balayssac, J.P.: Evaluation of the concrete electromagnetics properties by using radar measurements in a context of building sustainability. Comput. Phys. Commun. 180, 1277–1281 (2009)CrossRefGoogle Scholar
  29. García-García, F., Ramírez Blanco, M., Rodríguez Abad, I., Martínez Sala, R., Tort Ausina, I., Benlloch Marco, J., Montalvá Conesa, J.L.: GPR technique as a tool for cultural heritage restoration: San Miguel de los Reyes Hieronymite Monastery, 16th century (Valencia, Spain). J. Cult. Heritage 8(1), 87–92 (2007)CrossRefGoogle Scholar
  30. Giannopoulos, A.: Modelling ground penetrating radar by GPRMax. Constr. Build. Mater. 19, 755–762 (2005)CrossRefGoogle Scholar
  31. González-Drigo, R., Pérez-Gracia, V., Di Capua, D., Pujades, L.G.: GPR survey applied to Modernista buildings in Barcelona: the cultural heritage of the college of industrial engineering. J. Cult. Heritage 9, 196–202 (2008)CrossRefGoogle Scholar
  32. Grangeia, C., Senos Matias, M.J., Figueiredo, F., Hermozilha, H., Carvalho, P.: High resolution geophysics Inside Machado de Castro Museum – Coimbra, Centre Portugal. In: Proceedings of the 14th European Meeting of Environmental and Engineering Geophysics, Kraków, Poland, 15–17 Sept 2008Google Scholar
  33. Gutiérrez, F., Galve, J.P., Lucha, P., Bonachea, J., Jordá, L., Jorda, R.: Investigation of a large collapse sinkhole affecting a multi-storey building by means of geophysics and the trenching technique (Zaragoza city, NE Spain). Environ. Geol. 58, 1107–1122 (2009)CrossRefGoogle Scholar
  34. Hajihashemi, M.R., El-Shenawee, M.: The level set shape reconstruction algo-rithm applied to 2d pec targets hidden be-hind a wall. Prog. Electromagnet. Res. 25, 131–154 (2010)CrossRefGoogle Scholar
  35. Hamrouche, R., Klysz, G., Balayssac, J.P., Rhazi, J., Ballivy, G.: Numerical simulations and laboratory tests to explore the potential of ground-penetrating radar (GPR) in detecting unfilled joints in brick masonry structures. Int. J. Architectural Heritage 6, 648–664 (2012)CrossRefGoogle Scholar
  36. Hemeda, S.: Ground penetrating radar (GPR) investigations for architectural heritage preservation: the case of Habib Sakakini Palace, Cairo. Egypt. Open J. Geol. 2, 189–197 (2012a)CrossRefGoogle Scholar
  37. Hemeda, S.: Ground penetrating radar investigations for architectural heritage preservation of the Habib Sakakini palace, Cairo. Egypt. Int. J. Conserv. Sci. 3(3), 153–162 (2012b)Google Scholar
  38. Hoła, J., Schabowicz, K.: State-of-the-art non-destructive methods for diagnostic testing of building structures—anticipated development trends. Arch. Civ. Mech. Eng. 10(3), 5–17 (2010)CrossRefGoogle Scholar
  39. Hubbard, S.S., Zhang, J., Monteiro, P.J., Peterson, J.E., Rubin, Y.: Experimental detection of reinforcing bar corrosion using nondestructive geophysical techniques. ACI Mater. J. 100(6), 501–510 (2003)Google Scholar
  40. Ihamouten, A., Villain, G., Dérobert, X.: Complex permittivity frequency variations from multioffset GPR data: hydraulic concrete characterization. IEEE Trans. Instrum. Meas. 61(6), 1636–1648 (2012)CrossRefGoogle Scholar
  41. Imposa, S.: Infrared thermography and georadar techniques applied to the “Sala delle Nicchie” (Niches Hall) of Palazzo Pitti, Florence (Italy). J. Cult. Heritage 11(3), 259–264 (2010)CrossRefGoogle Scholar
  42. Kadioglu, S., Kadioglu, Y.K., Catapano, I., Soldovieri, F.: Ground penetrating radar and microwave tomography for the safety management of a cultural heritage site: Miletos Ilyas Bey Mosque (Turkey). J. Geophys. Eng. 10, 11 (2013). doi: 10.1088/1742-2132/10/6/064007
  43. Kalogeropoulos, A., van der Kruk, J., Hugenschmidt, J., Busch, S., Merz, K.: Chlorides and moisture assessment in concrete by GPR full waveform inversion. Near Surf. Geophys. 9(3), 277–285 (2011)Google Scholar
  44. Kannan, R.C.: Designing foundations around sinkholes. Eng. Geol. 52, 75–82 (1999)CrossRefGoogle Scholar
  45. Klysz, G., Balayssac, J.P.: Determination of volumetric water content of concrete using ground-penetrating radar. Cem. Concr. Res. 37(8), 1164–1171 (2007)CrossRefGoogle Scholar
  46. Lai, W.L., Kind, T., Stoppel, M., Wiggenhauser, H.: Measurement of accelerated steel corrosion in concrete using ground-penetrating radar and a modified half-cell potential method. J. Infrastruct. Syst. 19, 205–220 (2013)CrossRefGoogle Scholar
  47. Lai, W.L., Kind, T., Wiggenhauser, H.: Using ground penetrating radar and time–frequency analysis to characterize construction materials. NDT E Int. 44(1), 111–120 (2011)CrossRefGoogle Scholar
  48. Laurens, S., Balayssac, J.P., Rhazi, J., Arliguie, G.: Influence of concrete relative humidity on the amplitude of ground-penetrating radar (GPR) signal. Mater. Struct. 35(4), 198–203 (2002)CrossRefGoogle Scholar
  49. Laurens, S., Balayssac, J.P., Rhazi, J., Klysz, G., Arliguie, G.: Non-destructive evaluation of concrete moisture by GPR: experimental study and direct modeling. Mater. Struct. 38(9), 827–832 (2005)CrossRefGoogle Scholar
  50. Leucci, G., Persico, R., Soldovieri, F.: Detection of fractures from GPR data: the case history of the Cathedral of Otranto. J. Geophys. Eng. 4(4), 452–461 (2007)CrossRefGoogle Scholar
  51. Leucci, G.: Ground penetrating radar: an application to estimate volumetric water content and reinforced bar diameter in concrete structures. J. Adv. Concr. Technol. 10(12), 411–422 (2012)CrossRefGoogle Scholar
  52. Leucci, G., Melica, D., Quarta, G.: The Foggia Cathedral: an in situ integrated geophysical and mechanical study on the wooden structures of the ceiling. In: Proceedings of the Built Heritage 2013 Monitoring Conservation Management, Milan, Italy, 18–20 Nov 2013 Google Scholar
  53. Leucci, G.: Contribution of ground penetrating radar and electrical resistivity tomography to identify the cavity and fractures under the main church in Botrugno (Lecce, Italy). J. Archaeol. Sci. 33(9), 1194–1204 (2006)CrossRefGoogle Scholar
  54. Leucci, G., Cataldo, R., De Nunzio, G.: Subsurface water-content identification in a crypt using GPR and comparison with microclimatic conditions. Near Surf. Geophys. 4(4), 207–213 (2006)Google Scholar
  55. Leucci, G., Masini, N., Persico, R.: Time–frequency analysis of GPR data to investigate the damage of monumental buildings. J. Geophys. Eng. 9(4), 81–91 (2012)CrossRefGoogle Scholar
  56. Lorenzo, H., Cuéllar, V., Hernández, M.C.: Close range radar remote sensing of concrete degradation in a textile factory floor. J. Appl. Geophys. 47(3–4), 327–336 (2001)CrossRefGoogle Scholar
  57. Lorenzo, H., Hernández, M.C., Cuéllar, V.: Selected radar images of man-made underground galleries. Archaeol. Prospection 9(1), 1–7 (2002)CrossRefzbMATHGoogle Scholar
  58. Maierhofer, C., Brink, A., Röllig, M., Wiggenhauser, M.: Detection of shallow voids in concrete structures with impulse thermography and radar. NDT E Int. 36(4), 257–263 (2003)CrossRefGoogle Scholar
  59. Maierhofer, C., Leipold, S.: Radar investigation of masonry structures. NDT E Int. 34, 139–147 (2001)CrossRefGoogle Scholar
  60. Martín-Crespo, T., Gómez-Ortiz, D.: Collapse hazard assessment in evaporitic materials from ground penetrating radar: a case study. Environ. Geol. 53, 57–66 (2007)CrossRefGoogle Scholar
  61. Masini, N., Persico, R., Rizzo, E.: Some examples of GPR prospecting for monitoring of the monumental heritage. J. Geophys. Eng. 7(2), 190–199 (2010)CrossRefGoogle Scholar
  62. Mast, J.E., Lee, H., Murtha, J.P.: Application of microwave pulse-echo radar imaging to the nondestructive evaluation of buildings. Int. J. Imaging Syst. Technol. 4, 164–169 (1992)CrossRefGoogle Scholar
  63. Mayer, K., Zimmer, A., Langenberg, K.J., Kohl, C., Maierhofer, C.: Nondestructive evaluation of embedded structures in concrete: modeling and imaging. In: Proceedings of the International Symposium in Non-Destructive Testing in Civil Engineering (NDT-CE 2003), Berlin, Germany, 16–19 June 2003Google Scholar
  64. Mazurek, E., Lyskowski, M.: Practical application of high resolution ground penetrating radar method inside buildings. Geol. Geophys. Environ. 38(4), 439–448 (2012)CrossRefGoogle Scholar
  65. McCann, D.M., Forde, M.C.: Review of NDT methods in the assessment of concrete and masonry structures. NDT E Int. 34(2), 71–84 (2001)CrossRefGoogle Scholar
  66. Muller, W.: Trial of ground penetrating radar to locate defects in timber bridge girders. In: Proceedings of the Riding the Wave to Sustainability: IPWEAQ 2002 State Conference, Noosa Lakes, Queensland, Australia, 6–10 Oct 2002Google Scholar
  67. Novo, A., Lorenzo, H., Rial, F., Solla, M.: Three-dimensional ground-penetrating radar strategies over an indoor archaeological site: convent of Santo Domingo (Lugo, Spain). Archaeol. Prospection 17, 213–222 (2010)CrossRefGoogle Scholar
  68. Oliveri, G., Randazzo, A., Pastorino, M., Massa, A.: Imaging of separate scatterers by means of a multiscaling multiregion inexact-Newton approach. Progress Electromagnet. Res. 18, 247–257 (2011)CrossRefGoogle Scholar
  69. Orlando, L., Slob, V.: Using multicomponent GPR to monitor cracks in a historical building. J. Appl. Geophys. 67, 327–334 (2009)CrossRefGoogle Scholar
  70. Orlando, L., Pezone, A., Colucci, A.: Modeling and testing of high frequency GPR data for evaluation of structural deformation. NDT E Int. 43(3), 216–230 (2010)CrossRefGoogle Scholar
  71. Pérez-Gracia, V., Canas, J.A., Pujades, L.G., Clapés, J., Caselles, O., García, F., Osorio, R.: GPR survey to confirm the location of ancient structures under the Valencian Cathedral, Spain. J. Appl. Geophys. 43, 167–174 (2000)CrossRefGoogle Scholar
  72. Pérez-Gracia, V., García García, F., Rodríguez, I.: GPR evaluation of the damage found in the reinforced concrete base of a block of flats: a case study. NDT E Int. 4, 341–353 (2008a)CrossRefGoogle Scholar
  73. Pérez-Gracia, V., García, F., Pujades, L.G., González-Drigo, R., Di Capua, D.: GPR survey to study the restoration of a Roman monument. J. Cult. Heritage 9(1), 89–96 (2008b)CrossRefGoogle Scholar
  74. Pérez-Gracia, V., González-Drigo, R., Di Capua, D.: Horizontal resolution in a non-destructive shallow GPR survey: an experimental evaluation. NDT E Int. 41(8), 611–620 (2008c)CrossRefGoogle Scholar
  75. Pérez-Gracia, V., Caselles, J.O., Clapés, J., Martinez, G., Osorio, R.: Non-destructive analysis in cultural heritage buildings: evaluating the Mallorca cathedral supporting structures. NDT E Int. 59, 40–47 (2013)CrossRefGoogle Scholar
  76. Pérez-Gracia, V., Caselles, O., Clapés, J., Osorio, R., Canas, J.A., Pujades, L.G.: Radar exploration applied to historical buildings: a case study of the Marques de Llió palace, in Barcelona (Spain). Eng. Fail. Anal. 16, 1039–1050 (2009a)CrossRefGoogle Scholar
  77. Pérez-Gracia, V., Caselles, J.O., Clapes, J., Osorio, R., Martínez, G., Canas, J.A.: Integrated near-surface geophysical survey of the Cathedral of Mallorca. J. Archaeol. Sci. 36, 1289–1299 (2009b)CrossRefGoogle Scholar
  78. Pueyo-Anchuela, O., Casas-Sainz, A.M., Soriano, M.A., Pocoví Juan, A., Ipas-Lloréns, J.F., Ansón-López, D.: Integrated geophysical and building damages study of karst eff ects in the urban area of Alcalá de Ebro, Spain. Zeitschrift für Geomorphologie 54(2), 221–236 (2010)CrossRefGoogle Scholar
  79. Ramírez-Blanco, M., García-García, F., Rodríguez-Abad, I., Martínez-Sala, R., Benlloch, J.: Ground-penetrating radar survey for subfloor mapping and analysis of structural damage in the Sagrado Corazón de Jesús Church, Spain. Archaeol. Prospection 15(4), 285–292 (2008)CrossRefGoogle Scholar
  80. Ranalli, D., Scozzafava, M., Tallini, M.: Ground penetrating radar investigations for the restoration of historic buildings: the case study of the Collemaggio Basilica (L’Aquila, Italy). J. Cult. Heritage 5, 91–99 (2004)CrossRefGoogle Scholar
  81. Rial, F.I., Pereira, M., Lorenzo, H., Arias, P., Novo, A.: Resolution of GPR bowtie antennas: An experimental approach. J. Appl. Geophys. 67(4), 367–373 (2009)CrossRefGoogle Scholar
  82. Robert, A.: Dielectric permittivity of concrete between 50 MHz and 1 GHz and GPR measurements for building materials evaluation. J. Appl. Geophys. 40(1), 89–94 (1998)CrossRefGoogle Scholar
  83. Salucci, M., Sartori, D., Anselmi, N., Randazzo, A., Oliveri, G., Massa, A.: Imaging Buried Objects within the Second-Order Born Approximation through a Multiresolution Regularized Inexact-Newton Method”. In: International Symposium on Electromagnetic Theory (EMTS), Hiroshima, Japan, 20–24 May 2013Google Scholar
  84. Santos-Assunçao, S.: Assessment of the viability of subsurface radar as support for studies of seismic vulnerability. Ph.D. thesis (in process), Universitat Politecnica de Catalunya, Barcelona, Spain (2014)Google Scholar
  85. Sass, O., Viles, H.A.: How wet are these walls? Testing a novel technique for measuring moisture in ruined walls. J. Cult. Heritage 7, 257–263 (2006)CrossRefGoogle Scholar
  86. Satriani, A., Loperte, A., Proto, M., Bavusi, M.: Building damage caused by tree roots: laboratory experiments of GPR and ERT surveys. Adv. Geosci. 24, 133–137 (2010)CrossRefGoogle Scholar
  87. Soldovieri, F., Solimene, R.: Through-wall imaging via a linear inverse scattering algorithm. IEEE Trans. Geosci. Remote Sens. 4(4), 513–517 (2007)CrossRefGoogle Scholar
  88. Solla, M., Caamaño, J.C., Riveiro, B., Arias, P.: A novel methodology for the structural assessment of stone arches based on geometric data by integration of photogrammetry and ground-penetrating radar. Eng. Struct. 35, 296–306 (2012a)CrossRefGoogle Scholar
  89. Solla, M., González-Jorge, H., Álvarez, M.X., Arias, P.: Application of non-destructive geomatic techniques and FDTD modeling to metrical analysis of stone blocks in a masonry wall. Constr. Build. Mater. 36, 14–19 (2012b)CrossRefGoogle Scholar
  90. Solla, M., Lagüela, S., Riveiro, B., Lorenzo, H.: Non-destructive testing for the analysis of moisture in the masonry arch bridge of Lubians (Spain). Struct. Control Health Monit. 20, 1366–1376 (2013)Google Scholar
  91. Solla, M., Lorenzo, H., Novo, A., Rial, F.I.: Ground-penetrating radar assessment of the medieval arch bridge of San Antón, Galicia, Spain. Archaeol. Prospection 17, 223–232 (2010)CrossRefGoogle Scholar
  92. Solla, M., Riveiro, B., Lorenzo, H., Armesto, J.: Ancient stone bridge surveying by ground-penetrating radar and numerical modeling methods. J. Bridge Eng. 19, 110–119 (2014)CrossRefGoogle Scholar
  93. Topczewski, L., Fernandes, F.M., Cruz, P.J.S., Lourenço, P.B.: Practical implications of GPR investigation using 3D data reconstruction and transmission tomography. J. Build. Appraisal 3(1), 59–76 (2007)CrossRefGoogle Scholar
  94. Válek, J., Kruschwitz, S., Wöstmann, J., Kind, T., Valach, J., Köpp, C., Lesák, J.: Nondestructive investigation of wet building material: multimethodical approach. J. Perform. Constructed Facil. 24, 462–472 (2010)CrossRefGoogle Scholar
  95. Valle, S., Zanzi, L., Rocca, F.: Radar tomography for NDT: comparison of techniques. J. Appl. Geophys. 41, 259–269 (1999)CrossRefGoogle Scholar
  96. Xie, X., Li, P., Qin, H., Liu, L., Nobes, D.C.: GPR identification of voids inside concrete based on the support vector machine algorithm. J. Geophys. Eng. 10(3) 034002 (2013). doi:  10.1088/1742-2132/10/3/034002
  97. Zanzi, L., Arosio, D.: Sensitivity and accuracy in rebar diameter measurements from dual-polarized GPR data. Constr. Build. Mater. 48, 1293–1301 (2013)CrossRefGoogle Scholar
  98. Zhu, J., Popovics, J.S.: Non-contact imaging for surface-opening cracks in concrete with air-coupled sensors. Mater. Struct. 39(9), 801–806 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Strengthen of Materials and StructuresEUETIB/CEIB, Technical University of CataloniaCataloniaSpain
  2. 2.Defense Center University (University of Vigo)Spanish Naval AcademyPontevedraSpain

Personalised recommendations