Innovative Inspection Procedures for Effective GPR Surveying of Critical Transport Infrastructures (Pavements, Bridges and Tunnels)

  • Josef StrykEmail author
  • Amir M. Alani
  • Radek Matula
  • Karel Pospisil
Part of the Springer Transactions in Civil and Environmental Engineering book series (STICEE)


This project is in line with the interests of one of the four working groups’ activities within the COST Action project—TU1208. The project concerns diagnostics of transport infrastructure structures—pavements, bridges and tunnels—by ground penetrating radar (GPR). It includes individual applications which are currently in use and those which are still in the phase of research and verification. Furthermore, it introduces issues which need to be dealt with, so that this NDT method can be applied to a greater extent in this area.


Ground Penetrate Radar Bridge Deck Asphalt Binder Tunnel Lining Concrete Pavement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the COST Action TU1208: Civil Engineering Applications of Ground Penetrating Radar and the project of the Technology Agency of the Czech Republic No. TA02030759: New diagnostics methods as a supporting decision tools for maintenance and repair of road pavementstheir contribution and ways of their usage, supporting this work.


  1. Alani, A.M., Banks, K.: Applications of Ground Penetrating Radar in Medway Tunnel—Inspection of Structural Joints. In: 15th International Conference on Ground Penetrating Radar (GPR), Brussels, Belgium (2014)Google Scholar
  2. Alani, A.M., Aboutalebi, M., et al.: Integrated health assessment strategy using NDT for reinforced concrete bridges. NDT&E Int. 61, 80–94 (2014)CrossRefGoogle Scholar
  3. ASTM D4748-10.: Standard Test Method for Determining the Thickness of Bound Pavement Layers Using Short-Pulse Radar (2010)Google Scholar
  4. ASTM D6087-08.: Standard Test Method for Evaluating Asphalt-Covered Concrete Bridge Decks Using Ground Penetrating Radar (2008)Google Scholar
  5. ASTM D6432-11.: Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation (2011)Google Scholar
  6. BASt-report B 55.: Überprüfung des Georadarverfahrens in Kombination mit magnetischen Verfahren zur Zustandsbewertung von Brückenfahrbahnplatten aus Beton mit Belagsaufbau, Bundesanstalt für Straßenwesen (2007)Google Scholar
  7. B 10: Merkblatt über das Radarverfahren zur Zerstörungsfreien Prüfung im Bauwesen, Deutsche Gesellschaft für Zerstörungsfreie Prüfung e.V., DGZfP (2008)Google Scholar
  8. Beben, D., Mordak, A., et al.: Identification of viaduct beam parameters using the ground penetrating radar (GPR) technique. NDT&E Int. 49, 18–26 (2012)CrossRefGoogle Scholar
  9. Benedetto, A.: A three dimensional approach for tracking cracks in bridges using GPR. J. Appl. Geophys. 97, 37–44 (2013)CrossRefGoogle Scholar
  10. Benedetto, A., Manacorda, G., et al.: Novel perspectives in bridges inspection using GPR. Nondestr. Test. Eval. 27(3), 239–251 (2012)CrossRefGoogle Scholar
  11. Berthelot, C., Podborochynski, D., et al.: Ground-penetrating radar evaluation of moisture and frost across typical Saskatchewan road soils. Adv. Civ. Eng., 9 (2010)Google Scholar
  12. Cassidy, N.J., Eddies, R., et al.: Void detection beneath reinforced concrete sections: The practical application of ground-penetrating radar and ultrasonic techniques. J. Appl. Geophys. 74(4), 263–276 (2011)CrossRefGoogle Scholar
  13. Chang, C.W., Lin, C.H., et al.: Measurement radius of reinforcing steel bar in concrete using digital image GPR. Constr. Build. Mater. 23(2), 1057–1063 (2009)Google Scholar
  14. Dérobert, X., et al.: Pathologies, diagnostic et réparation des chapes d’étanchéité d’ouvrages d’art, Techn. et Méthodes LPC, chapter 6, annex 2, 199 p (2011)Google Scholar
  15. Dérobert, X., Berenger, B.: Case study: Expertise and reinforcement of a particular ribbed slab post-tensioned structure. Non-destr. Eval. Reinf Concr. Struct. 2, 574–584 (2010)CrossRefGoogle Scholar
  16. DMRB 3.1.7.: Design Manual for Roads and Bridges, Advice notes on the non-destructive testing of highway structures—advice note 3.5 BA 86/2006: Ground Penetrating Radar (GPR), UK, Department for Transport (2006)Google Scholar
  17. DMRB 7.3.2.: Design Manual for Roads and Bridges, Data for pavement assessment—annex 6 HD 29/2008: Ground-Penetrating Radar (GPR), UK, Highway Agency (2008)Google Scholar
  18. Edwards, L., Mason, Q.: Evaluation of nondestructive methods for determining pavement thickness, final report, (prepared for Headquarters Air Force Civil Engineer Support Agency) (2011)Google Scholar
  19. Fauchard, C., Rejiba, F., et al.: Step frequency radar applied for asphalt thickness measurements with various interface conditions. In: 12th International Conference on Ground Penetrating Radar (GPR), Birmingham, UK, 16–19 June 2008Google Scholar
  20. Hubbard, S.S., Zhang, J., et al.: Experimental detection of reinforcing bar corrosion using nondestructive geophysical techniques. ACI Mater. J. 100(6), 501–510 (2003)Google Scholar
  21. Hugenschmidt, J., Kalogeropoulos, A.: The inspection of retaining walls using GPR. J. Appl. Geophys. 67(4), 335–344 (2009)CrossRefGoogle Scholar
  22. Hugenschmidt, J., Mastrangelo, R.: GPR inspection of concrete bridges. Cem. Concr. Compos. 28(4), 384–392 (2006)CrossRefGoogle Scholar
  23. Hugenschmidt, J., Kasa, C., et al.: GPR for the inspection of industrial railway tracks. Near Surf. Geophys. 11(5), 485–491 (2013)Google Scholar
  24. Krysiński, L., Sudyka, J.: Typology of reflections in the assessment of the interlayer bonding condition of the bituminous pavement by the use of an impulse high-frequency ground-penetrating radar. Nondestr. Test. Eval. 27(3), 219–227 (2012)CrossRefGoogle Scholar
  25. Krysiński, L., Sudyka, J.: GPR abilities in investigation of the pavement transversal cracks. J. Appl. Geophys. 97, 27–36 (2013)CrossRefGoogle Scholar
  26. Lalagüe, A., Hoff, I.: Determination of space behind pre-cast concrete elements in tunnels using GPR. In: 13th International Conference on Ground Penetrating Radar (GPR), pp. 1–5. Lecce, Italy (2010)Google Scholar
  27. Loizos, A., Plati, C.: Accuracy of pavement thicknesses estimation using different ground penetrating radar analysis approaches. NDT&E Int. 40(2), 147–157 (2007)CrossRefGoogle Scholar
  28. Mara Nord Project.: Recommendations for guidelines for the use of GPR in bridge deck surveys, June 2011aGoogle Scholar
  29. Mara Nord Project.: Recommendations for guidelines for the use of GPR in road construction quality control, June 2011bGoogle Scholar
  30. Mara Nord Project.: The Use of GPR in Road Rehabilitation Projects, June 2011cGoogle Scholar
  31. Muller, W.: A network-level road investigation trial using Australian-made traffic-speed 3D ground penetrating radar (GPR) technology. In: 25th ARRB Conference, Perth, Australia, 23–26 Sept 2012Google Scholar
  32. Saarenketo, T., Scullion, T.: Road evaluation with ground penetrating radar. J. Appl. Geophys. 43(2–4), 119–138 (2000)CrossRefGoogle Scholar
  33. Saarenketo, T.: Electrical properties of road materials and subgrade soil and the use of ground penetrating radar in traffic infrastructure surveys, Faculty of Science, Department of Geosciences, University of Oulu, Ph.D. dissertation work, p. 121 (2006)Google Scholar
  34. Sbartaï, Z.M., Laurens, S., et al.: Using radar direct wave for concrete condition assessment: Correlation with electrical resistivity. J. Appl. Geophys. 62(4), 361–374 (2007)CrossRefGoogle Scholar
  35. SHRP 2, Strategic Highway Research Program 2: Nondestructive Testing to Identify Delaminations Between HMA Layers, vol. 1 and 2. Transportation Research Board, Washington (2013a)Google Scholar
  36. SHRP 2, Strategic Highway Research Program 2: Nondestructive Testing to Identify Concrete Bridge Deck Deterioration. Transportation Research Board, Washington (2013b)Google Scholar
  37. SHRP 2, Strategic Highway Research Program 2: Mapping Voids, Debonding, Delaminations, Moisture, and Other Defects Behind or Within Tunnel Linings. Transportation Research Board, Washington (2013c)Google Scholar
  38. Silvast, M., Wiljanen, B.: ONKALO EDZ—Measurements using ground penetrating radar (GPR) method, working report, Posiva Oy, p 66 (2008)Google Scholar
  39. Solla, M., Lorenzo, H., et al.: Ground-penetrating radar for the structural evaluation of masonry bridges: Results and Interpretational tools. Constr. Build. Mater. 29, 458–465 (2012)CrossRefGoogle Scholar
  40. Stryk, J., Matula, R.: Possibilities of ground penetrating radar usage within acceptance tests of rigid pavements. J. Appl. Geophys. 97, 11–26 (2013)CrossRefGoogle Scholar
  41. Tarussov, A., Vandry, M., et al.: Condition assessment of concrete structures using a new analysis method: Ground-penetrating radar computer-assisted visual interpretation. Constr. Build. Mater. 38, 1246–1254 (2013)CrossRefGoogle Scholar
  42. Tosti, F., Benedetto, A.: Pavement pumping prediction using ground penetrating radar. Soc. Behav. Sci. 53(3), 1045–1054 (2012)Google Scholar
  43. Xiang, L., Zhou, H., et al.: GPR evaluation of the Damaoshan highway tunnel: A case study. NDT and E Int. 59, 68–76 (2013)CrossRefGoogle Scholar
  44. Zhang, F., Xie, X., et al.: Application of ground penetrating radar in grouting evaluation for shield tunnel construction. Tunn. Undergr. Space Technol. 25(2), 99–107 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Josef Stryk
    • 1
    Email author
  • Amir M. Alani
    • 2
  • Radek Matula
    • 1
  • Karel Pospisil
    • 1
  1. 1.CDV—Centrum Dopravního Výzkumuv.v.i. Líšeňská 33aBrnoCzech Republic
  2. 2.School of Computing and TechnologyUniversity of West LondonLondonUK

Personalised recommendations