Advertisement

Applications of Radar Systems in Planetary Sciences: An Overview

  • Fabio TostiEmail author
  • Lara Pajewski
Chapter
Part of the Springer Transactions in Civil and Environmental Engineering book series (STICEE)

Abstract

This chapter aims at reviewing remarkable results and sophistication of radar systems achieved over the history in several planetary explorations by dividing the treatment according to different planets and celestial bodies investigated. Both established and novel radar-based techniques for space exploration are described within an overall top-down approach being consolidated over years. As a result of the review, future perspectives of the research are highlighted and some benefits and limitations of different techniques are described. In line with this, increasingly reliable surveys are expected in the next few years, which can provide important information in the understanding of past and present natural phenomena as well as to sustain future human explorers and look for clues of habitable zones.

Keywords

Synthetic Aperture Radar Radar System European Space Agency Very High Frequency Radar Altimeter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors acknowledge the COST Action TU1208 “Civil Engineering Applications of Ground Penetrating Radar”, supporting this work.

References

  1. Akhmanova, M., Dement’ev, B., Markov, M.: Possible water in Luna 24 Regolith from the Sea of Crises. Geochem Int. 15, 166 (1978)Google Scholar
  2. Arcone, S.E., Prentice, M.L., Delaney, A.J.: Stratigraphic profiling with ground-penetrating radar in permafrost. A review of possible analogs for Mars. J. Geophys. Res. 107(E11), 5108 (2002)CrossRefGoogle Scholar
  3. Barlow, N.G., Bradley, T.L.: Martian impact craters: correlations of ejecta and interior morphologies with diameter, latitude and terrain. Icarus 87(1), 156–179 (1990)CrossRefGoogle Scholar
  4. Barsukov, V.L., Basilevsky, A.T., Burba1, G.A., Bobinna, N.N., Kryuchkovt, V.P., Kuzmin, R.O., Nikolaeva, O.V., Pronin, A.A., Ronca, L.B., Chernaya, L.M., Shashkina, V.P., Garanin, A.V., Kushky, E.R., Markov, M.S., Sukhanov, A.L., Kofelnikoy, V.A., Rzhiga, N., Petrov, G.M., Alexandrov, Y.N., Sidorenko, A.I., Bogomolov, A.F., Skrypnik, G.L., Bergman, M.Y., Kudrins, L.V., Bokshtein, L.M., Kronrod, M.A., Chochia, P.A., Tyuflin, Y.S., Kadnichansky, S.A., Akim, E.L.: The geology and geomorphology of the Venus surface as revealed by the radar images obtained by Veneras 15 and 16. Paper presented at the sixteenth lunar and planetary science conference, part 2, J. Geophys. Res., 91, B4, D399-D411 (1986)Google Scholar
  5. Basilevsky, A.T., Pronin, A.A., Ronca, L.B., Kryuchkov, V.P., Sukhanov, A.L., Markov, M.S.: Styles of tectonic deformations on Venus: analysis of Venera 15 and 16 data. Paper presented at the sixteenth lunar and planetary science conference, part 2, J. Geophys. Res. 91, B4, D399-D411 (1986)Google Scholar
  6. Berthelier, J.J.: GPR, a ground penetrating radar for the Netlander mission. J. Geophys. Res. 108(E4), 8027 (2003)CrossRefGoogle Scholar
  7. Campbell, B.A.: Comment on “Regolith layer thickness mapping of the Moon by radar and optical data” by Y G. Shkuratov and N. V. Bondarenko. Icarus 158, 560–561 (2002)Google Scholar
  8. Carr, M.H.: Water on Mars. Oxford University Press, New York (1996)Google Scholar
  9. Ciarletti, V., Corbel, C., Plettemeier, D., Caїs, P., Clifford, S.M., Hamran, S.-E.: WISDOM GPR designed for shallow and high-resolution sounding of the martian subsurface. Proc. IEEE 99(5), 824–836 (2011)CrossRefGoogle Scholar
  10. Clifford, S.M.: Mars analog investigations of the West Egyptian desert utilising multi-frequency GPR and other electromagnetic sounding techniques. Paper presented at the 37th lunar and planetary science conference, p. 2442 (2006)Google Scholar
  11. Costard, F., Kargel, J.S.: Outwash plains and thermokarst on Mars. Icarus 114, 93–112 (1995)CrossRefGoogle Scholar
  12. Curlander, J.C., McDonough, R.N.: Synthetic Aperture Radar. Wiley Interscience, New York (1991)zbMATHGoogle Scholar
  13. Draper, C.W.: The Crookes radiometer revisited. A centennial celebration. J. Chem. Educ. 53(6), 356 (1976)CrossRefGoogle Scholar
  14. Fa, W.: Simulation for ground penetrating radar (GPR) study of the subsurface structure of the Moon. J. Appl. Geophys. 99, 98–108 (2013)CrossRefGoogle Scholar
  15. Fu, L.-L., Cazenave, A.: Satellite altimetry and earth sciences: a handbook of techniques and applications. Fu and Cazenave Eds., Academic Press (2001)Google Scholar
  16. Glassmeier, K.-H., Boehnhardt, H., Koschny, D., Kührt, E., Richter, I.: The Rosetta mission: Flying towards the origin of the solar system. Space Sci. Rev. 128(1-4), 1−21 (2007)Google Scholar
  17. Grimm, R.E.: A comparison of time domain electromagnetic and surface nuclear magnetic resonance sounding for subsurface water on Mars. J. Geophys. Res. 108(E4), 8037 (2003)CrossRefMathSciNetGoogle Scholar
  18. Herique, A., Kofman, W.: Definition of the CONSERT/Rosetta radar performances. Committee on earth observation satellites (CEOS) SAR workshop, Tokyo, 2–5 Apr 2001, CEOS–SAR01–006: 275Google Scholar
  19. Holmberg, N.A., Faust, R.P., Holt, H.M.: Viking’75 spacecraft design and test, Summary Volume 1, NASA Ref Pub. 1027, 174–180 (1980)Google Scholar
  20. Jones, W.L., Schroeder, L.C., Bracalente, E.M., Boggs, D.H., Brown, R.A., Dome, G.J., Pierson, W.J., Wentz, F.J.: The Seasat-A satellite scatterometer—the geophysical evaluation of remotely sensed wind vectors over the ocean. J. Geophys. Res. 87(C5), 3297–3317 (1982)CrossRefGoogle Scholar
  21. Kofman, W., Barbin, Y., Klinger, J., Levasseur-Regourd, A.-C., Barriot, J.-P., Herique, A., Hagfors, T., Nielsen, E., Grün, E., Edenhofer, P., Kochan, H., Picardi, G., Seu, R., van Zyl, J., Elachi, C., Melosh, J., Veverka, J., Weissman, P., Svedhem, L.H., Hamran, S.E., Williams, I.P.: Comet nucleus sounding experiment by radiowave transmission. Adv. Space Res. Ser. 21(11), 1589–1598 (1998)Google Scholar
  22. Milkovich, S.M., Plaut, J.J., Phillips, R.J., Picardi, G., Seu, R.: MARSIS and SHARAD radar reflections within Promethei Lingula, South Polar Layered Deposits, Mars. American Geophysical Union, Fall Meeting 2007, Abstract #P11B-0545 (2007)Google Scholar
  23. Mishkin, A., Morrison, J., Nguyen, T., Stone, H., Cooper, B., Wilcox, B.: Experiences with operations and autonomy of the mars pathfinder microrover. Paper presented at the IEEE aerospace conference, vol. 2, pp. 337–351, 21–28 Mar 1998Google Scholar
  24. NASA/JPL (National Aeronautics and Space Administration Jet Propulsory Laboratory).: Spacecraft: Surface Operations: Rover. Available online at http://mars.nasa.gov/mer/mission/spacecraft_rover_energy.html (2004)
  25. Nieto, C.E., Stewart, R.R.: Geophysical investigations at a mars analog site: Devon Island, Nunavut. Paper presented at the third mars polar science conference (2003)Google Scholar
  26. Olhoeft, G.R.: Ground penetrating radar on Mars. Paper presented at the 7th international conference on ground penetrating radar, pp. 387–392, 27–30 May 1998Google Scholar
  27. Picardi, G.: Subsurface sounding in mars advanced radar for subsurface and ionosphere sounding (MARSIS) Geochim. Cosmochim. Acta 69(10), 531 (2005)Google Scholar
  28. Porcello, L.J., Jordan, R.L., Zelenka, J.S., Adams, G.F., Phillips, R.J., Brown, W.E., Ward, S.H., Jackson, P.L.: The Apollo lunar sounder radar system. Proc. IEEE 62, 769–783 (1974)CrossRefGoogle Scholar
  29. Porco, C.C., Baker, E., Barbara, J., Beurle, K., Brahic, A., Burns, J.A., Charnoz, S., Cooper, N., Dawson, D.D., Del Genio, A.D., Denk, T., Dones, L., Dyudina, U., Evans, M.W., Giese, B., Grazier, K., Helfenstein, P., Ingersoll, A.P., Jacobson, R.A., Johnson, T.V., McEwen, A., Murray, C.D., Neukum, G., Owen, W.M., Perry, J., Roatsch, T., Spitale, J., Squyres, S., Thomas, P.C., Tiscareno, M., Turtle, E., Vasavada, A.R., Veverka, J., Wagner, R., West, R.: Cassini imaging science: initial results on phoebe and iapetus. Science 307(5713), 1237–1242 (2005)CrossRefGoogle Scholar
  30. Putzig, N.E., Holt, J.W., Phillips, R.J., Seu, R., Biccari, D., Campbell, B.A., Carter, L.M., Safaeinili, A., Egan, A.F.: Internal structure of the north polar layered deposits on mars from SHARAD observations. American Geophysical Union, Fall Meeting 2007, Abstract #P11B-0544Google Scholar
  31. Saunders, R.S., Pettengill, G.H., Arvidson, R.E., Sjogren, W.L., Johnson, W.T.K., Pieri, L.: The Magellan venus radar mapping mission. J. Geophys. Res. 95(B6), 8339–8355 (1990)CrossRefGoogle Scholar
  32. Seu, R., Phillips, R.J., Biccari, D., Orosei, R., Masdea, A., Picardi, G., Safaeinili, A., Campbell, B.A., Plaut, J.J., Marinangeli, L., Smrekar, S.E., Nunes, D.C.: SHARAD sounding radar on the mars reconnaissance orbiter. J. Geophys. Res. 112, E05S05 (2007)Google Scholar
  33. Simmons, G., Strangway, D.W., Annan, A.P., Baker, R., Bannister, L., Brown, R., Cubley, D., DeBettencourt, J., England, A.W., Groener, J., Kong, J., LaTorraca, G., Meyer, J., Nanda, V., Redman, J.D., Rossiter, J., Tsang, L., Urner, J., Watts, R.: The surface electrical properties experiment, Apollo 17, Preliminary Science Report, NASA SP-330, pp. 15-1–15-14 (1974)Google Scholar
  34. Simon, M.N., Carter, L.M., Campbell, B.A., Phillips, R.J., Mattei, S.: Studies of lava flows in the Tharsis region of Mars using SHARAD. Paper presented at the 43rd lunar and planetary science conference, p. 1595 (2012)Google Scholar
  35. Stillman, D.E., Olhoeft, G.R.: Electromagnetic properties of Martian analog minerals at radar frequencies and Martian temperatures. Paper presented at the 37th lunar and planetary science conference, p. 2002 (2006)Google Scholar
  36. Sun, Z., Jia, Y., Zhang, H.: Technological advancements and promotion roles of Chang’e-3 lunar probe mission. Sci. China 56(11), 2702–2708 (2013)CrossRefGoogle Scholar
  37. Tahu, G., Shulte, M.: Mars 2020 Project Update. NASA Planetary Science Subcommittee (PSS) Committee on Astrobiology and Planetary Science (CAPS) Report, 3 Sept 2014Google Scholar
  38. Wainstein, P.A., Wan Bun Tseung, J.-M., Moorman, B.J., Stevens, C.W.: Integrating GPR and CCRI techniques: Implications for the identification and mapping of ground ice on Mars. Int. J. Mars Sci. Explor. 4, 1–13 (2008)Google Scholar
  39. Zou, X.D., Li, C.L., Liu, J.J., Mu, L.L., Ren, X., Gao, X.Y., Zhang, X.X.: The preliminary analysis of the Crater X Near Chang’e-3 landing site. Paper presented at the 45th lunar and planetary science conference, p. 2403 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of EngineeringRoma Tre UniversityRomeItaly

Personalised recommendations