Advertisement

Applications of GPR in Association with Other Non-destructive Testing Methods in Surveying of Transport Infrastructures

  • Mercedes SollaEmail author
  • Henrique Lorenzo
  • Joaquin Martínez-Sánchez
  • Vega Pérez-Gracia
Chapter
Part of the Springer Transactions in Civil and Environmental Engineering book series (STICEE)

Abstract

Preservation and maintenance of transport infrastructure is a global concern that affects social and economic development in all countries. During the last decades, there has been a continuous increase in the use of non-destructive testing (NDT) applied to many aspects related to civil engineering field. Ground Penetrating Radar (GPR) has become an established method of inspection. This paper presents a compilation of works in the frame of the applications of GPR and other NDT methods in the evaluation of transport infrastructures. Published works in roads and pavements, concrete and masonry structures, and tunnel testing are mentioned. It has been demonstrated that such methods have significantly benefited the procedures for inspection and also, successfully solved some of the limitations of traditional methods.

Keywords

Ground Penetrating Radar Inertial Measurement Unit Bridge Deck Transport Infrastructure Masonry Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors acknowledge the COST Action TU1208 “Civil Engineering Applications of Ground Penetrating Radar”, supporting this work.

References

  1. Abraham, O., Dérobert, X.: Non-destructive testing of fired tunnel walls: the Mont-Blanc Tunnel case study. NDT&E Int. 36, 411–418 (2003)CrossRefGoogle Scholar
  2. Arias, P., Armesto, J., Di-Capua, D., González-Drigo, R., Lorenzo, H., Pérez-Gracia, V.: Digital photogrammetry, GPR and computational analysis of structural damages in a medieval bridge. Eng. Fail. Anal. 14, 1444–1457 (2007)CrossRefGoogle Scholar
  3. Bala, D.C., Garg, R.D., Jain, S.S.: Rebar detection using GPR: an emerging non-destructive QC approach. Int. J. Eng. Res. Appl. (IJERA) 1(4), 2111–2117 (2011)Google Scholar
  4. Barber, D., Mills, J., Smith-Voysey, S.: Geometric validation of a ground-based mobile laser scanning system. ISPRS J. Photogram. Remote Sens. 63(1), 128–141 (2008)CrossRefGoogle Scholar
  5. Breysse, D., Klysz, G., Déboret, X., Sirieix, C., Lataste, J.F.: How to combine several non-destructive techniques for a better assessment of concrete structures. Cem. Concr. Res. 38, 783–793 (2008)CrossRefGoogle Scholar
  6. Cardarelli, E., Marrone, C., Orlando, L.: Evaluation of tunnel stability using integrated geophysical methods. J. Appl. Geophys. 52, 93–102 (2003)CrossRefGoogle Scholar
  7. Chen, D.H., Chen, T.-T., Scullion, T., Bilyeu, J.: Integration of field and laboratory testing to determine the causes of a premature pavement failure. Can. J. Civ. Eng. 33, 1345–1358 (2006)CrossRefGoogle Scholar
  8. Colla, C., Das, P.C., McCann, D., Forde, M.: Sonic, electromagnetic and impulse radar investigation of stone masonry bridges. NDT&E Int. 30(4), 249–254 (1997)CrossRefGoogle Scholar
  9. Diamanti, N., Giannopoulos, A.: Employing ADI-FDTD subgrids for GPR numerical modeling and their application to study ring separation in brick masonry arch bridges. Near Surf. Geophys. 9, 245–256 (2011)CrossRefGoogle Scholar
  10. Diamanti, N., Redman, D.: Field observations and numerical models of GPR response from vertical pavement cracks. J. Appl. Geophys. 81, 106–116 (2012)CrossRefGoogle Scholar
  11. Domitrović, J., Rukavina, T.: Application of GPR and FWD in assessing pavement bearing capacity. In: Proceedings of International Scientific Conference on Road Research and Administration, Bucharest, 4–5 July 2013Google Scholar
  12. Dumoulin, J., Ibos, L., Ibarra-Castanedo, C., Mazioud, A., Marchetti, M., Maldague, X., Bendada, A.: Active infrared thermography applied to defect detection and characterization on asphalt pavement samples: comparison between experiments and numerical simulations. J. Mod. Opt. 57(8), 1759–1769 (2010)CrossRefzbMATHGoogle Scholar
  13. Fauchard, C., Dérobert, X., Cariou, J., Côte, Ph: GPR performances for thickness calibration on road test sites. NDT&E Int. 36, 67–75 (2003)CrossRefGoogle Scholar
  14. Fernandes, F.: Evaluation of two novel NDT techniques: microdrilling of clay bricks and ground penetrating radar in masonry. Ph.D. thesis, Universidade do MinhoGoogle Scholar
  15. Flint, R.C., Jackson, P.D., McCann, D.M.: Geophysical imaging inside masonry structures. NDT&E Int. 32, 469–479 (1999)CrossRefGoogle Scholar
  16. Gordon, M.O., Broughton, K., Hardy, M.S.A.: The assessment of the value of GPR imaging of flexible pavements. NDT&E Int. 31(6), 429–438 (1998)CrossRefGoogle Scholar
  17. Grégoire, C., Van Geem, C.: Use of radar in road investigation—BRRC experience. In: Proceedings of 7th International Workshop on Advanced GPR, 6 pp, Nantes, France, 2–5 July 2013Google Scholar
  18. Grote, K., Hubbardb, S., Harvey, J., Rubin, Y.: Evaluation of infiltration in layered pavements using surface GPR reflection techniques. J. Appl. Geophys. 57, 129–153 (2005)CrossRefGoogle Scholar
  19. Hugenschmidt, J.: Railway track inspection using GPR. J. Appl. Geophys. 43, 147–155 (2000)CrossRefGoogle Scholar
  20. Hugenschmidt, J., Kalogeropoulos, A., Soldovieri, F., Prisco, G.: Processing strategies for high-resolution GPR concrete inspections. NDT&E Int. 43, 334–342 (2010)CrossRefGoogle Scholar
  21. Jaakkola, A., Hyyppä, J., Hyyppä, H., Kukko, A.: Retrieval algorithms for road surface modelling using laser—based mobile mapping. Sensors 8(9), 5238–5249 (2008)CrossRefGoogle Scholar
  22. Karlovšek, J., Scheuermann, A., Willimas, D.J.: Investigation of voids and cavities in Bored Tunnels using GPR. In: Proceedings of 14th International Conference on Ground Penetrating Radar, pp. 496–501, Shanghai, China, 4–8 June 2012Google Scholar
  23. Klysz, G., Balayssac, J.P.: Determination of volumetric water content of concrete using ground-penetrating radar. Cem. Concr. Res. 37, 1164–1171 (2007)CrossRefGoogle Scholar
  24. Krysiński, L., Sudyka, J.: GPR abilities in investigation of the pavement transversal cracks. J. Appl. Geophys. 97, 27–36 (2013)CrossRefGoogle Scholar
  25. Lai, W.L., Kind, T., Wiggenhauser, H.: Detection of accelerated reinforcement corrosion in concrete by ground penetrating radar. In: Proceedings of 13th International Conference on GPR, 5 pp, Lecce, Italy, 21–25 June 2010Google Scholar
  26. Liu, H., Xie, X., Sato, M.: Accurate thickness estimation of a backfill grouting layer behind shield tunnel lining by CMP measurement using GPR. In: Proceedings of 14th International Conference on GPR, pp. 137–142, Shanghai, China, 4–8 June 2012Google Scholar
  27. Loizos, A., Plati, C.: Accuracy of pavement thicknesses estimation using different ground penetrating radar analysis approaches. NDT&E Int. 40, 147–157 (2007)CrossRefGoogle Scholar
  28. Loizos, A., Plati, C.: Ground penetrating radar: a smart sensor for the evaluation of the railway trackbed. In: Proceedings of Conference on Instrumentation and Measurement Technology Conference, 6 pp, Warsaw, Poland, 1–3 May 2007bGoogle Scholar
  29. Lorenzo, H., Rial, F.I., Pereira, M., Solla, M.: A full non-metallic trailer for GPR road surveys. J. Appl. Geophys. 75, 490–497 (2011)CrossRefGoogle Scholar
  30. Lubowiecka, I., Arias, P., Riveiro, B., Solla, M.: A multidisciplinary approach to assess historic bridges using photogrammetry, ground penetrating radar and finite elements analysis. Comput. Struct. 89, 1615–1627 (2011)CrossRefGoogle Scholar
  31. Martínez-Sánchez, J., Nogueira, M., González-Jorge, H., Solla, M., Arias, P.: SITEGI Project: applying geotechnologies to road inspection. Sensor integration and software processing. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. II-5/W2, pp. 181–186. ISPRS Workshop Laser Scanning 2013, Antalya, Turkey, 11–13 Nov 2013Google Scholar
  32. Orbán, Z., Gutermann, M.: Assessment of masonry arch railway bridges using nondestructive in-situ testing methods. Eng. Struct. 31(10), 2287–2298 (2009)CrossRefGoogle Scholar
  33. Papí, J., Esteban, M.: Artificial vision real results. Thinking Highways, pp. 60–62 (2012)Google Scholar
  34. Parkinson, G., Ékes, C.: Ground penetrating radar evaluation of concrete tunnel linings. In: Proceedings of 12th International Conference on GPR, 11 pp, Birmingham, UK, 16–19 June 2008Google Scholar
  35. Pedret, J., Pérez-Gracia, V.: Study of ground penetrating radar sensitivity to asphalt mixtures void content in road pavements. Revista Ingeniería de Obras Civiles-RIOC, vol. 1, pp. 5–18 (2011)Google Scholar
  36. Pedret, J., Pérez-Gracia, V., Valdés, G.A.: Fundamentos y ejemplos de aplicación del ensayo no destructivo de reflexión electromagnética mediante georradar en pavimentos asfálticos. In: resúmenes del congreso 10º PROVIAL, Innovación Tecnológica para la Gestión Vial 2012, 8–10 October, Santiago de Chile, Chile (2012)Google Scholar
  37. Pérez-Gracia, V.: Radar de subsuelo. Evaluación para aplicaciones en arqueología y en patrimonio histórico-artístico. PhD thesis. Universidad Politécnica de Cataluña (2001)Google Scholar
  38. Pérez-Gracia, V., Di Capua, D., Caselles, O., Rial, F., Lorenzo, H., González-Drigo, R., Armesto, J.: Characterization of a Romanesque Bridge in Galicia (Spain). Int. J. Arch. Herit. 5(3), 251–263 (2011)Google Scholar
  39. Plati, C., Loizos A.: Using ground-penetrating radar for assessing the structural needs of asphalt pavements. Non Destruct. Test Eval. 27(3), 273–284 (2012)Google Scholar
  40. Puente, I., Solla, M., González-Jorge, H., Arias P.: Validation of mobile LiDAR surveying for measuring pavement layer thicknesses and volumes. NDT&E Int. 60, 70–76 (2013)Google Scholar
  41. Road Doctor—Roadscanner: Available from http://www.roadscanners.com/index.php/consulting/laser-scanning-services Accessed 14 Jan 2014
  42. Saarenketo, T., Scullion, T.: Road Evaluation with ground penetrating radar. J. Appl. Geophys. 43, 119–138 (2000)Google Scholar
  43. Sandoval, S., Mínguez, R., Nestares, E., Carbó, A.: Multidisciplinary study of a ballast collapse in a high-speed railway track in Spain. In: Proc. 6th Int. Conf. on applied geophysics for environmental and territorial system engineering, Sardinia, Italy, April 28-30 (2011)Google Scholar
  44. Santos-Assunçao, S., Pedret Rodés, J., Pérez-Gracia, V.: Ground Penetrating Radar Railways Inspection. In: Proc. 75th EAGE Conference & Exhibition incorporating SPE EUROPEC 2013, (paper Tu P09 02), London, UK, June 10–13 (2013)Google Scholar
  45. Sbartaï, Z.M., Laurens, S., Balayssac, J.P., Arliguie G., Ballivy G.: Ability of the direct wave of radar ground-coupled antenna for NDT of concrete structures. NDT&E Int. 39, 400–407 (2006)Google Scholar
  46. Sbartaï, Z.M., Breysse, D., Larget, M., Balayssac, J.P.: Combining NDT techniques for improved evaluation of concrete properties. Cem. Concr. Compo. 34, 725–733 (2012)Google Scholar
  47. Siteco—Road Scanner Mapping Mobile System: Available from http://www.sitecoinf.it/siteco_eng/eng/roadscanner.html Accessed 14 Jan 2014
  48. Solla, M., Lorenzo, H., Rial, F.I., Novo, A.: Ground-penetrating radar for the structural evaluation of masonry bridges: Results and interpretational tools. Constr. Build. Mat. 29, 458–465 (2012a)Google Scholar
  49. Solla, M., Caamaño, J.C., Riveiro, B., Arias, P.: A novel methodology for the structural assessment of stone arches based on geometric data by the integration of photogrammetry and ground-penetration radar. Eng. Struct. 35, 296–306 (2012b)Google Scholar
  50. Solla, M., González-Jorge, H., Varela, M., Lorenzo H.: Ground-penetrating radar for inspection of in-road structures and data interpretation by numerical modeling. J. Constr. Eng. Manag. 139(6), 749–753 (2013a)Google Scholar
  51. Solla, M., Lagüela, S., Riveiro, B., Lorenzo, H.: Non-destructive testing for the analysis of moisture in the masonry arch bridge of Lubians (Spain). Struct. Control Health Monit. 20, 1366–1376 (2013b)Google Scholar
  52. Solla, M., Lagüela, S., González-Jorge, H., Arias, P.: Approach to identify cracking in asphalt pavement using GPR and infrared thermographic methods: Preliminary findings. NDT&E Int. 62, 55–65 (2014)Google Scholar
  53. Stryk, J.: Road diagnostics—ground penetrating radar possibilities. Art. nº5, Intersections Test Methods 5(1), 48–57 (2008)Google Scholar
  54. Suksawat, B.: Development of a multifunction international roughness index and profile measuring device. In: Proc. Int. Conf. Control Autom Systems, pp. 795–799 (2011)Google Scholar
  55. Sybilski, D., Bańkowski, W., Sudyka, J., Krysiński, L.: Reasons of premature cracking pavement deterioration—a case study. In: Proc. 7th RILEM Int. Conf. on Cracking in Pavements, RILEM vol. 4, pp. 1029–1038 (2012)Google Scholar
  56. Szynkiewicz, A., Grabowski, P.: GPR Monitoring of pavements on airfield. In: Proc. 10th Int. Conf. on Ground Penetrating Radar, Delft, The Netherlands, June 21–24, pp. 803–806 (2004)Google Scholar
  57. Utsi, V., Birtwisle, A.: Evaluation of bridge decks using ground probing radar (GPR). In: Mechtcherine, Schenck (eds.) Concrete Solutions, Grantham, Taylor & Francis group, London (2012)Google Scholar
  58. Vafidis, A., Economou, N., Dimitriadis, K.: Time varying zero-phase filtering of GPR data for imaging pavement layers. In: Proc. 73rd European Association of Geoscientists and Engineers Conference and Exhibition, Vienna, Austria, May 23–26, vol. 1, pp. 2794–2798 (2011)Google Scholar
  59. Van der Wielen, A., Courard, L., Nguyen, F.: Static detection of thin layers into concrete with ground penetrating radar. Restor. Build. Monuments 18(3/4), 247–254 (2012)Google Scholar
  60. Van Geen, C., Grégoire, C.: Rehabilitation of roads containing of cobblestone pavements covered with a bituminous layer. In: Proc., 9th Int. Conf. on the Bearing Capacity of Roads, Railways and Airfields (BCRRA), Trondheim, 25–27 June, 10 pp (2013)Google Scholar
  61. Villain, G., Sbartaï, Z.M., Dérobert, X., Garnier, V., Balayssac, J.P.: Durability diagnosis of a concrete structure in a tidal zone by combining NDT methods: Laboratory tests and case study. Constr. Build. Mat. 37, 893–903 (2012)Google Scholar
  62. Xiang, L., Zhou, H., Shu, Z., Tan, S., Liang, G., Zhu, J.: GPR evaluation of the Damaoshan highway tunnel: A case study. NDT&E Int. 59, 68–76 (2013)Google Scholar
  63. Xie, X., Zeng, C.: Non-destructive evaluation of shield tunnel condition using GPR and 3D laser scanning. In: Proc., 14th Int. Conf. on GPR, Shanghai, China, June 4–8, pp. 479–484 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mercedes Solla
    • 1
    Email author
  • Henrique Lorenzo
    • 2
  • Joaquin Martínez-Sánchez
    • 2
  • Vega Pérez-Gracia
    • 3
  1. 1.Defense Center University (University of Vigo), Spanish Naval AcademyPontevedraSpain
  2. 2.Department of Natural Resources and Environment EngineeringUniversity of VigoVigoSpain
  3. 3.Department of Strengthen of Materials and Structures, EUETIBTechnical University of CataloniaCataloniaSpain

Personalised recommendations