Advertisement

Applications of GPR for Humanitarian Assistance and Security

  • Xavier Núñez-NietoEmail author
  • Mercedes Solla
  • Henrique Lorenzo
Chapter
Part of the Springer Transactions in Civil and Environmental Engineering book series (STICEE)

Abstract

This Chapter deals with a compilation of published works in the frame of the applications of the GPR for humanitarian assistance and security. The fields of application, in which the technique has experienced more advances, are the detection of mines and unexploded ordnances, as well as the location of underground spaces. Different types of defensive constructions were built throughout history to protect people from natural catastrophes, aerial bombardments and other attacks. Moreover, the use of the GPR technology in rescue operations is considered by including the main contributions in locating human remains or living victims in disaster areas. An overview of the main GPR works in humanitarian missions and their results are therefore mentioned. Specific systems, methodologies and processing algorithms developed in these applications are also analysed. As result, the method has shown significantly benefits when compared to other traditional searching methods.

Keywords

Independent Component Analysis Underground Space False Alarm Ratio Unexploded Ordnance Adaptive Line Enhancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors acknowledge the COST Action TU1208 “Civil Engineering Applications of Ground Penetrating Radar”, supporting this work.

References

  1. Abujarad, F., Omar, A.S.: Factor and principle component analysis for automatic landmine detection based on ground penetrating radar. In: Proceedings of German Microwave Conference (GeMIC’06), Karlsruhe, Mar 2006Google Scholar
  2. Abujarad, F: Ground penetrating radar signal processing for landmine detection. Dissertation, Otto von Guericke University Magdeburg (2007)Google Scholar
  3. Akiyama, I., Ohya, A., Aoki, Y., Matsuno, F.: Search for survivors buried in rubble by rescue radar with array antennas—extraction of respiratory fluctuation. In: Proceedings of the 2007 IEEE International Workshop on Safety, Security and Rescue Robotics, Rome, 27–29 Sept 2007Google Scholar
  4. Annan, P., Davis, J.: Impulse radar sounding in permafrost. Radio Sci. 11, 383–394 (1976)CrossRefGoogle Scholar
  5. Balsi, M., Esposito, S., Frezza, F., Nocito, P., Pajewski, L., Porrini, L., Schettini, G., Twizere, C.: FDTD simulation of GPR measurements in a laboratory sandbox for landmine detection. In: Proceedings of the 5th International Workshop on Advanced Ground Penetrating Radar (IWAGPR’09), Granada, 27–29 May 2009Google Scholar
  6. Banks, E.: Brassey’s Essential Guide to Anti-Personnel Landmines; Recognising and Disarming. Brassey’s, London (1997)Google Scholar
  7. Barkat, B., Zoubir, A.M., Brown, C.L.: Application of time-frequency techniques for the detection of anti-personnel landmines. In: Proceedings of the 10th IEEE Workshop on Statistical Signal and Array, Pocono Manor, 14–16 Aug 2000Google Scholar
  8. Bruschini, C., Gros, B., Guerne, F., Pièce, P.Y., Carmona, O.: Ground penetrating radar and imaging radar detector for antipersonnel mine detection. J. Appl. Geophys. 40, 59–71 (1998)CrossRefGoogle Scholar
  9. Campbell, K., Orange, A.: A continuous profile of sea ice and freshwater ice thickness by impulse radar. Polar Record 17(106), 31–41 (1974)CrossRefGoogle Scholar
  10. Capineri, L., Ivashov, S., Bechtel, T., Zhuravlev, A., Falorni, P., Windsor, C., Borgioli, G., Vasiliev, I., Sheyko, A.: Comparison of GPR sensor types for landmine detection and classification. In: Proceedings of the 12th International Conference on Ground Penetrating Radar, University of Birmingham, Birmingham, 16–19 June 2008Google Scholar
  11. Carevic, D.: A Kalman Filter-Based Approach to Target Detection and Target-Background Separation in Ground Penetrating Radar Data. DSTO Electronics and Surveillance Research Laboratory, Salisbury (1999)Google Scholar
  12. Carevic, D.: Clutter reduction and detection of mine-like objects in ground penetrating radar data using wavelets. Subsurf. Sens. Technol. Appl. 1(1), 101–118 (2000)CrossRefGoogle Scholar
  13. Chamberlain, A.T.: Cave detection in limestone using ground penetrating radar. J. Archaeol. Sci. 27, 957–964 (2000)CrossRefGoogle Scholar
  14. Chan, Y.K., Koo, V.C.: An introduction to synthetic aperture radar (SAR). Prog. Electromagnet. Res. B 2, 27–60 (2008)CrossRefGoogle Scholar
  15. Cist, D.B.: Non-destructive evaluation after destruction: using ground penetrating radar for search and rescue. In: Non-destructive Testing in Civil Engineering (NDTCE’09), Nantes, 30 June–3 July 2009Google Scholar
  16. Congram, D.R.: A clandestine burial in Costa Rica: prospection and excavation. J. Forensic Sci. 53(4), 793–796 (2008)CrossRefGoogle Scholar
  17. Crocco, L., Ferrara, V.: A review of ground penetrating radar technology for the detection of buried or trapped victims. In: Proceedings of the 2014 International Conference on Collaboration Technologies and Systems (CTS 2014), Minnesota, 19–23 May 2014Google Scholar
  18. Curlander, J.C., McDounough, R.N.: Synthetic Aperture Radar, Systems and Signal Processing. Wiley, New York (1991)zbMATHGoogle Scholar
  19. Daniels, D.J.: Locating caves, tunnels and mines. Geophy. Lead. Edge Explor. 7, 32–52 (1988)Google Scholar
  20. Daniels, D.J.: Ground Penetrating Radar. The Institution of Electrical Engineering, London (2004)CrossRefGoogle Scholar
  21. Daniels, D.J.: A review of GPR for landmine detection. Sens. Imaging Int. J. 7(3), 90–123 (2006)CrossRefMathSciNetGoogle Scholar
  22. Daniels, D.J., Curtis, P., Amin, R., Hunt, N.: MINEHOUND™ production development. In: Proceedings of Detection and Remediation Technologies for Mines and Minelike Targets X, vol. 5794, pp. 488–494 (2005)Google Scholar
  23. Daniels, D.J., Gunton, D.J., Scott, H.F.: Introduction to subsurface radar. Radar Sig. Proc. IEE Proc. F 135(4), 278–320 (1988)CrossRefGoogle Scholar
  24. Deiana, D., Anitori, L.: Detection and classification of landmines using AR modeling of GPR data. In: Proceedings of the 13th International Conference on Ground Penetrating Radar, Lecce, 21–25 June 2010Google Scholar
  25. Doheny, R., Burke, S., Cresci, R., Ngan, P., Walls, R.: Handheld standoff mine detection system (HSTAMIDS) field evaluation in Thailand. In: Proceedings of Detection and Remediation Technologies for Mines and Minelike Targets X, vol. 5794, pp. 889–900 (2005)Google Scholar
  26. Donelli, M.: A rescue radar system for the detection of victims trapped under rubble based on the independent component analysis algorithm. Prog. Electromagnet. Res. M 19, 173–181 (2011)CrossRefGoogle Scholar
  27. Dyana, A., Rao, C.H., Kuloor, R.: 3D segmentation of ground penetrating radar data for landmine detection. In: Proceedings of the 14th International Conference on Ground Penetrating Radar, Shanghai, 4–8 June 2012Google Scholar
  28. Eide, E., Hjelmstad, J.: UXO and landmine detection using 3-dimensional ground penetrating radar system in a network centric environment. In: Proceedings of ISTMP 2004 (2004)Google Scholar
  29. El-Qady, G., Hafer, M., Abdalla, M.A., Ushijima, K.: Imaging subsurface cavities using geolectric tomography and ground-penetrating radar. J. Cave Karst Stud. 67(3), 174–181 (2005)Google Scholar
  30. Feng, X., Fujiwara, J., Zhou, Z., Kobayashi, T., Sato, M.: Imaging algorithm of a hand-held GPR MD sensor (ALIS). In: Proceedings of Detection and Remediation Technologies for Mines and Minelike Targets X, SPIE, vol. 5794, pp. 1192–1199 (2005)Google Scholar
  31. Firoozabadi, R., Miller, E.L., Rappaport, C.M., Morgenthaler, A.W.: Sub-surface sensing of buried objects under a randomly rough surface using scattered electromagnetic field data. IEEE Trans. Geosci. Remote Sens. 45(1), 93–104 (2007)CrossRefGoogle Scholar
  32. France, D.L., Griffin, T.J., Swanburg, J.G., Lindemann, J.W., Davenport, G.C., Trammell, V., et al.: A multidisciplinary approach to the detection of clandestine graves. J. Forensic Sci. 37(6), 1445–1458 (1992)Google Scholar
  33. Freeland, R.S., Miller, M.L., Yoder, R.E., Koppenjan, S.K.: Forensic application of FMCW and pulse radar. J. Environ. Eng. Geophys. 8(2), 97–103 (2003)CrossRefGoogle Scholar
  34. Frigui, H., Ho, K.C., Gader, P.: Real-time landmine detection with ground-penetrating radar using discriminative and adaptive hidden Markov models. EURASIP J. Adv. Sig. Process. 2005, 419248 (2005)Google Scholar
  35. Fruehauf, F., Heilig, A., Schneebeli, M., Fellin, W., Scherzer, O.: Experiments and algorithms to detect snow avalanche victims using airborne ground-penetrating radar. IEEE Trans. Geosci. Remote Sens. 47(7), 2240–2251 (2009)CrossRefGoogle Scholar
  36. Gader, P.D., Mystkowski, M., Zhao, Y.: Landmine detection with ground penetrating radar using hidden Markov models. IEEE Trans. Geosci. Remote Sens. 36(6), 1231–1244 (2001)CrossRefGoogle Scholar
  37. Gao, P., Collins, L.: A two-dimensional generalized likelihood ratio test for land mine and small unexploded ordnance detection. Sig. Process. 80, 1669–1686 (2000)CrossRefGoogle Scholar
  38. Garreau, P., Cottard, G., Berthaud, P., Beaumont, E., Bolomey, J-Ch: Potentials of microwave tomographic imaging for on line detection of land mines. In: Proceedings of the EUREL International Conference on the Detection of Abandoned Land Mines, Edinburgh, 7–9 Oct 1996Google Scholar
  39. Geophysical Survey Systems Inc.: LifeLocator®. http://www.gssilifelocator.com/. Accessed 24 May 2014
  40. González-Huici, M.A.: Strategy for landmine detection and recognition using simulated GPR responses. In: Proceedings of the 14th International Conference on Ground Penetrating Radar, Tongji University, Shanghai, 4–8 June 2012Google Scholar
  41. Grasmueck, M., Green, A.G.: 3-D georadar mapping: looking into the subsurface. Environ. Eng. Geosci. 2(2), 195–200 (1996)CrossRefGoogle Scholar
  42. Grasmueck, M., Viggiano, D.A.: Integration of ground-penetrating radar and laser positioning sensors for real-time 3-D data fusion. IEEE Trans. Geosci. Remote Sens. 45(1), 130–137 (2007)CrossRefGoogle Scholar
  43. Grazzini, G., Pieraccini, M., Parrini, F., Spinetti, A., Macaluso, G., Dei, D., Atzeni, C.: An ultra-wide band high-dynamic range GPR for detecting buried people after collapse of buildings. In: Proceedings of the 13th International Conference on Ground Penetrating Radar, Lecce, 21–25 June 2010Google Scholar
  44. Hammon, W.S., McMechan, G.A., Zeng, X.: Forensic GPR: finite-difference simulations of responses from buried human remains. J. Appl. Geophys. 45(3), 171–186 (2000)CrossRefGoogle Scholar
  45. Heilig, A., Schneebeli, M., Fellin, W.: Feasibility study of a system for airborne detection of avalanche victims with ground penetrating radar and a possible automatic location algorithm. Cold Reg. Sci. Technol. 51(2/3), 178–190 (2008)CrossRefGoogle Scholar
  46. Igel, J., Preetz, H.: Small-scale variability of electromagnetic soil properties and their influence on landmine detection: How to measure, how to analyse, and how to interpret? In: Proceedings of SPIE Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XIV, vol. 7303, p. 730312 (2009)Google Scholar
  47. Instanes, A., Lønne, I., Sandaker, K.: Location of avalanche victims with ground penetrating radar. Cold Reg. Sci. Technol. 38, 55–61 (2004)CrossRefGoogle Scholar
  48. Jaedicke, C.: Snow mass quantification and avalanches victim search by ground penetrating radar. Surv. Geophy. 24(5/6), 431–445 (2003)CrossRefGoogle Scholar
  49. Jin, T., Zhou, Z.: Ultrawideband synthetic aperture radar lanmine detection. IEEE Trans. Geosci. Remote Sens. 45(11), 3561–3573 (2007)CrossRefGoogle Scholar
  50. Jin, T., Zhou, Z.: Ultrawideband synthetic aperture radar unexploded ordnance detection. IEEE Trans. Aerosp. Electron. Syst. 46(3), 1201–1213 (2010)CrossRefMathSciNetGoogle Scholar
  51. Joynt, V.P.: Mobile metal detection: a field perspective. In: Proceedings of the 2nd International Conference on the Detection of Abandoned Land Mines, Edinburgh, 12–14 Oct 1998Google Scholar
  52. Kowalenko, K.: Saving lives, one land mine at a time. IEEE Inst. 28, 10–11 (2004)Google Scholar
  53. Lazăr, C., Ene, D., Parnic, V., Popovici, D.N., Florea, M.: Ground penetrating radar prospections in Romania. Măriuţa-la movilă necropolis, a case study. Mediterr. Archaeol. Archaeometry 11(2):79–89 (2011)Google Scholar
  54. Leckebusch, J.: Ground-penetrating radar: a modern three-dimensional prospection method. Archaeol. Prospection 10, 213–240 (2003)CrossRefGoogle Scholar
  55. Leckebusch, J.: Precision real-time positioning for fast geophysical prospection. Archaeol. Prospection 12(3), 199–202 (2005)CrossRefGoogle Scholar
  56. Li, W., Jing, X., Li, Z., Wang, J.: A new algorithm for through wall human respiration monitoring using GPR. In: Proceedings of the 14th International Conference on Ground Penetrating Radar, Tongji University, Shanghai, 4–8 June 2012 (2012a)Google Scholar
  57. Li, Z., Jing, X., Li, W., Wang, J.: A wavelet-based strong clutter removal technique for UWB life detection. In: Proceedings of the 14th International Conference on Ground Penetrating Radar, Tongji University, Shanghai, 4–8 June 2012 (2012b)Google Scholar
  58. Ligthart, E.E., Yarovoy, A.G., Roth, F., Ligthart, L.P.: Landmine detection in high resolution 3-D GPR images. In: Proceedings of MIKON 2004Google Scholar
  59. Lin, A., Novo, A., Har-Noy, S., Ricklin, N., Stamatiou, K.: Combining GeoEye-1 satellite remote sensing, UAV aerial imaging, and geophysical surveys in anomaly detection applied to archaeology. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 4, 870–876 (2011)CrossRefGoogle Scholar
  60. Linford, N., Linford, P., Martin, L., Payne, A.: Stepped frequency ground-penetrating radar survey with a multi-element array antenna: results from field application on archaeological sites. Archaeol. Prospection 17, 187–198 (2010)CrossRefGoogle Scholar
  61. Lorenzo, H., Hernández, M.C., Cuéllar, V.: Selected radar images of man-made underground galleries. Archaeol. Prospection 9(1), 1–7 (2002)CrossRefzbMATHGoogle Scholar
  62. Lualdi, M., Zanzi, L.: 3D GPR investigations on building elements using the PSG. In: Proceedings of Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP), San Antonio, Texas, 6–10 Apr 2003Google Scholar
  63. Lukin, K., Konovalov, V.: Through wall detection and recognition of human beings using noise radar sensor. In: Proceedings of the RTO SET Symposium on Target Identification and Recognition Using RF Systems, Oslo, 11–13 Oct 2004Google Scholar
  64. Maierhofer, C.: Nondestructive evaluation of concrete infrastructure with ground penetrating radar. J. Mater. Civ. Eng. 15(3), 287–297 (2003)CrossRefGoogle Scholar
  65. Martinaud, M., Frappa, M., Chapoulie, R.: GPR signal for the understanding of the shape and filling of manmade underground masonry. In: Proceedings of the 10th International Conference on Ground Penetrating Radar, Delft University of Technology, Delft, 21–24 June 2004Google Scholar
  66. Mellet, J.S.: Location of human remains with ground penetrating radar. In: Hanninen, P., Autio, S. (eds.) Proceedings of the 4th International Conference on Ground Penetrating Radar, Finland, 2012 (1992)Google Scholar
  67. Millington, T.M., Cassidy, N.J., Nuzzo, L., Crocco, L., Soldovieri, F., Pringle, J.K.: Interpreting complex, three-dimensional, near-surface GPR surveys: an integrated modelling and inversion approach. Near Surf. Geophy. 9, 297–304 (2011)CrossRefGoogle Scholar
  68. Modroo, J.J., Olhoeft, G.R.: Avalanche rescue using ground penetrating radar. In: Proceedings of the 10th International Conference on Ground Penetrating Radar, Delft University of Technology, Delft, 21–24 June 2004Google Scholar
  69. Nabelek, D.P., Ho, K.C.: Detection of shallow buried objects using an autoregressive model on the ground penetrating radar signal. In: Proceedings of SPIE 8709, Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XVIII, 87091I, 7 June 2013Google Scholar
  70. Novo, A., Solla, M., Montero-Fenollós, J.L., Lorenzo, H.: Searching for the remains of an Early Bronze Age city at Tell Qubr Abual-’Atiq (Syria) through archaeological investigations and GPR imaging. J. Cult. Heritage (2013). http://dx.doi.org/10.1016/j.culher.2013.10.006
  71. Novo, A., Lorenzo, H., Rial, F.I., Solla, M.: 3D GPR in forensics: finding a clandestine grave in a mountainous environment. Forensic Sci. Int. 204, 134–138 (2011)CrossRefGoogle Scholar
  72. Novo, A., Lorenzo, H., Rial, F.I., Solla, M.: From pseudo-3D to full-resolution GPR imaging of a complex roman site. Near Surf. Geophy. 10, 11–15 (2012a)CrossRefGoogle Scholar
  73. Novo, A., Dabas, M., Morelli, G.: The STREAM X multi-channel GPR system: first test at Vieil-Evreux (France) and comparison with other geophysical data. Archaeol. Prospection 19(3), 179–189 (2012b)CrossRefGoogle Scholar
  74. Pérez-Gracia, V., Canas, J.A., Pujades, L.G., Clapes, J., Caselles, O., Garcia, F., Osorio, R.: GPR survey to confirm the location of ancient structures under the Valencian Cathedral (Spain). J. Appl. Geophys. 43(2–4), 167–174 (2000)CrossRefGoogle Scholar
  75. Pieraccini, M., Luzi, G., Dei, D.: Detection of breathing and heartbeat through snow using a microwave transceiver. IEEE Geosci. Remote Sens. Lett. 5(1), 57–59 (2008)CrossRefGoogle Scholar
  76. Pringle, J.K., Doyle, P., Babits, L.E.: Multidisciplinary investigations at stalag luft III allied prisoner-of-war camp: the site of the 1944 great escape, Zagan, Western Poland. Geoarchaeology Int. J. 22(7), 729–746 (2007)CrossRefGoogle Scholar
  77. Pringle, J.K., Jervis, J., Cassella, J.P.N., Cassidy, J.: Time-lapse geophysical investigations over a simulated urban clandestine grave. J. Forensic Sci. 53(6), 1405–1416 (2008)Google Scholar
  78. Pringle, J.K., Ruffell, A., Jervis, J.R., Donnelly, L., McKinley, J., Hansen, J., Morgan, R., et al.: The use of geoscience methods for terrestrial forensic searches. Earth Sci. Rev. 114(1–4), 108–123 (2012a)CrossRefGoogle Scholar
  79. Pringle, J.K., Holland, C., Szkornik, K., Harrison, M.: Establishing forensic search methodologies and geophysical surveying for the detection of clandestine graves in coastal beach environments. Forensic Sci. Int. 219, e29–e36 (2012b)CrossRefGoogle Scholar
  80. Pringle, J.K., Jervis, J.R., Hansen, J.D., Glenda, M.J., Cassidy, N.J., Cassella, J.P.: Geophysical monitoring of simulated clandestine graves using electrical and ground-penetrating radar methods: 0–3 years after burial. J. Forensic Sci. 57(6), 1467–1486 (2012c)CrossRefGoogle Scholar
  81. Ruffell, A., McKinley, J.: Forensic geoscience: applications of geology, geomorphology and geophysics to criminal investigations. Earth Sci. Rev. 69, 235–247 (2005)CrossRefGoogle Scholar
  82. Ruffell, A., Donnelly, C., Carver, N., Murphy, E., Murray, E., McCambridge, J.: Suspect burial excavation procedure: a cautionary tale. Forensic Sci. Int. 183, 11–16 (2009)CrossRefGoogle Scholar
  83. Sachs, J., Aftanas, M., Crabbe, S., Drutarovsky, M., Klukas, R., Kocur, D. et al.: Detection and tracking of moving or trapped people hidden by obstacles using ultra-wideband pseudo-noise radar. In: Proceedings of the European Radar Conference, Amsterdam, 30–31 Oct 2008Google Scholar
  84. Sato, M., Fujiwara, J., Feng, Z., Zhou, Z., Kobayashi, T.: Development of a hand-held GPR MD sensor system (ALIS). In: Proceedings of SPIE, Detection and Remediation Technologies for Mines and Minelike Targets X vol. 5794, pp. 1192–1199, 10 June 2005Google Scholar
  85. Sato, M., Kobayashi, T., Takahashi, K., Fujiwara, J., Feng, X.: Vehicle-mounted SAR-GPR and its evaluation. In: Proceedings of SPIE 6217, Detection and Remediation Technologies for Mines and Minelike Targets XI, 62172H, 18 May 2006Google Scholar
  86. Schultz, J.J.: Detecting buried remains in Florida using ground-penetrating radar. Dissertation, University of Florida (2003)Google Scholar
  87. Schultz, J.J.: Using ground-penetrating radar to locate clandestine graves of homicide victims. Homicide Stud. 11(1), 15–29 (2007)CrossRefGoogle Scholar
  88. Schultz, J.J.: Sequential monitoring of burial containing small pig cadavers using ground-penetrating radar. J. Forensic Sci. 53(2), 279–287 (2008)CrossRefGoogle Scholar
  89. Schultz, J.J., Martin, M.M.: Controlled GPR grave research: comparison of reflection profiles between 500 and 250 MHz antennae. Forensic Sci. Int. 209(1–3), 64–69 (2011)CrossRefGoogle Scholar
  90. Schultz, J.J., Collins, M.E., Falsetti, A.B.: Sequential monitoring of burials containing large pig cadavers using ground-penetrating radar. J. Forensic Sci. 51(3), 607–616 (2006)CrossRefGoogle Scholar
  91. Sensors and Software Inc.: Rescue radar. https://sensoft.ca/Products/Rescue-Radar/Overview.aspx. Accessed 24 May 2014
  92. Sezgin, M.: Simultaneous buried object detection and imaging technique utilizing fuzzy weighted background calculation and target energy moments on ground penetrating radar data. EURASIP J. Adv. Sig. Process. 2011, 55 (2011). doi: 10.1186/1687-6180-2011-55 CrossRefGoogle Scholar
  93. Solla, M., Lorenzo, H., Novo, A., Rial, F.I.: Ground-Penetrating Radar Assessment of the Medieval Arch Bridge of San Anton, Galicia, Spain. Archaeol. Prospection 17(4), 223–232 (2010)CrossRefGoogle Scholar
  94. Solla, M., Riveiro, B., Álvarez, M.X., Arias, P.: Experimental forensic scenes for the characterization of ground-penetrating radar wave response. Forensic Sci. Int. 220, 50–58 (2012)CrossRefGoogle Scholar
  95. Solla, M., Núñez-Nieto, X., Novo, A., Lorenzo, H.: Uso del Georradar en Aplicaciones Militares: Caso Particular de Detección de Túneles Subterráneos. Revista General de Marina, Ministerio de Defensa. Editorial MIC, León (2014)Google Scholar
  96. Sun, Y., Li, J.: Time-frequency analysis for plastic landmine detection via forward-looking ground penetrating radar. IEE Proc. Radar Sonar Navig. 150(4), 253–261 (2003)Google Scholar
  97. Takahashi, K., Preetz, H., Igel, J.: The influence of soil properties on landmine detection, 10–12. SPIE Newsroom. doi:  10.1117/2.1201206.004265. (2012)
  98. Takeuchi, T., Uematsu, Y., Saito, H., Aoki, Y.: Measurement of survivor location for rescue radar system by using two dimensional array antenna. In: Proceedings of the 2008 IEEE International Workshop on Safety, Security and Rescue Robotics, Sendai, 21–24 Oct 2008Google Scholar
  99. Testafariam, G.T., Mali, D.: GPR technologies for landmine detection. Int. J. Comput. Sci. Commun. Technol. 5(1), 768–774 (2012)Google Scholar
  100. Trinks, I., Nissen, J., Johansson, B., Emilsson, J., Gustafsson, C., Friborg, J., Gustafsson, J.: Pilot study of the new multichannel GPR system MIRA for large scale, high-resolution archaeological prospection at the site of the Viking town Birka in Sweden. ISAP News 16, 4–7 (2008)Google Scholar
  101. Trinks, I., Johansson, B., Gustafsson, J., Emilsson, J., Friborg, J., Gustafsson, C., Nissen, J., Hinterleitner, A.: Efficient, large-scale archaeological prospection using a true three-dimensional ground-penetrating radar array system. Archaeol. Prospection 17, 175–186 (2010)CrossRefGoogle Scholar
  102. Valová, P., Glisníková, V.: Using geophysical survey to investigate underground passages in and around Matky Boží chapel. Interdisciplinaria Archaeologica Nat. Sci. Archaeol.II 2, 175–179 (2011)Google Scholar
  103. Van Deen, J.K., de Feijter, J.W.: Three-dimensional ground probing radar. Geol. Surv. Finland Spec. Pap. 16, 35–40 (1992)Google Scholar
  104. Van der Merwe, A., Gupta, I.: A novel signal processing technique for clutter reduction in GPR measurements of small, shallow land mines. IEEE Trans. Geosci. Remote Sens. 38, 2627–2637 (2000)CrossRefGoogle Scholar
  105. Vickers, R.S.: Design and applications of airborne radars in the VHF/UHF Band. In: IEEE AES Magazine, 26–29 June 2002Google Scholar
  106. Wang, J., Li, Y., Zhou, Z. et al.: Image formation techniques for vehicle-mounted forward-looking ground penetrating SAR. In: Proceedings of the International Conference on Information and Automation, Changsha, 20–23 June 2008Google Scholar
  107. Wu, S., Tan, K., Xu, Y., Chen, J., Meng, S., Fang, G.: A simple strategy for moving target imaging via an experimental UWB through-wall radar. In: Proceedings of the 14th International Conference on Ground Penetrating Radar, Tongji University, Shanghai, 4–8 June 2012Google Scholar
  108. Zaikov, E., Sachs, J., Aftanas, M., Rovnakova, J.: Detection of trapped people by UWB radar. In: Proceedings of the German Microwave Conference (GeMiC’08), Hamburg, 10–12 March 2008Google Scholar
  109. Zoubir, A.M., Chant, I.J., Brown, C.L., Barkat, B., Abeynayake, C.: Signal processing techniques for landmine detection using impulse ground penetrating radar. IEEE Sens. J. 2, 41–51 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Xavier Núñez-Nieto
    • 1
    • 3
    Email author
  • Mercedes Solla
    • 1
    • 3
  • Henrique Lorenzo
    • 2
    • 3
  1. 1.Defense University CenterSpanish Naval AcademyMarínSpain
  2. 2.Department of Natural Resources and Environment EngineeringUniversity of VigoVigoSpain
  3. 3.Applied Geotechnologies Research GroupUniversity of VigoVigoSpain

Personalised recommendations