Advertisement

Design of Advanced GPR Equipment for Civil Engineering Applications

  • Guido ManacordaEmail author
  • Raffaele Persico
  • Howard F. Scott
Chapter
Part of the Springer Transactions in Civil and Environmental Engineering book series (STICEE)

Abstract

This chapter describes the issues to be addressed in the design of Ground Penetrating Radar equipment dedicated to civil engineering applications. Radar is well known for its ability to detect aircraft, ships, vehicles, birds, rainstorms and other above-ground objects. It relies for its operation on the transmission of electro-magnetic energy, usually in the form of a pulse, and the detection of the small amount of energy that is reflected from the target. The round-trip transit time of the pulse and its reflection provide range information on the target. The application of radar in the detection of buried objects is quite old; there are details of such work dating back to 1910, with the first pulsed experiments reported in 1926 when the depths of rock strata were determined by time-of-flight methods. The design of effective Ground Penetrating Radars requires solutions to technical challenges in three major areas:
  • Radio Frequency system design.

  • Antenna design.

  • Data analysis.

Hence, this chapter reviews the commonly available GPR system architectures and summarises main design challenges to build an effective tool.

Keywords

Singular Value Decomposition Ground Penetrating Radar Bridge Deck Time Domain Signal Ultra Wide Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Benedetto, A.: Theoretical approach to electromagnetic monitoring of road pavement. In Proceedings of X International Conference on Ground Penetrating Radar, Delft, The Netherlands (2004)Google Scholar
  2. Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. Institute of Physics Publishing, Bristol (1998)CrossRefzbMATHGoogle Scholar
  3. Chan, W.C., Stewart, R.R.: 3-D f-k filtering. CREWES Res. Rep. 6, 15/1–15/7 (1994)Google Scholar
  4. Chew, W.C.: Waves and Fields in Inhomogeneous Media. Institute of Electrical and Electronics Engineers, Piscataway, NJ (1995)Google Scholar
  5. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer, Berlin (1992)CrossRefzbMATHGoogle Scholar
  6. Conyers, L.B.: Ground Penetrating Radar for Archaeology. AltaMira Press, Lanham (2004)Google Scholar
  7. Daniels, D.J.: Ground Penetrating Radar, 2nd edn. IEEE press, New Jersey (2004)CrossRefGoogle Scholar
  8. Devaney, A.J.: Inverse-scattering theory within the Rytov approximation. Opt. Lett. 6(8), 374–376 (1981)CrossRefGoogle Scholar
  9. Di Lorenzo, R.: Trading Systems: Theory and Immediate Practice. Springer, Berlin (2013). ISBN 978-88-470-2706-0CrossRefGoogle Scholar
  10. Giannopoulos, A.: GprMax2D V 1.5 (Electromagnetic simulator for Ground Probing Radar, the software is available at www.gprmax.org) (2003)
  11. Goodman, D., Piro, S.: GPR Remote Sensing in Archaeology. Springer, New York (2013)CrossRefGoogle Scholar
  12. Grasmueck, M., Weger, R., Horstmeyer, H.: How dense is dense enough for a “real” 3D GPR survey?, society of exploration geophysicists. In: 73nd Annual International Meeting, Expanded Abstracts, pp. 1180–1183 (2003)Google Scholar
  13. Grasmueck, M., Weger, R., Horstmeyer, H.: Full-resolution 3D GPR imaging. Geophysics 70(1), K12–K19 (2005)CrossRefGoogle Scholar
  14. Hugenschmidt, J., Loser, R.: Detection of chlorides and moisture in concrete structures with ground penetrating radar. Mater. Struct. 41(4), 785–792 (2008). doi: 10.1617/s11527-007-9282-5
  15. Jol, H.: Ground Penetrating Radar: Theory and Applications. Elsevier, Amsterdam (2009)Google Scholar
  16. Kim, J.K., Cho, S.J., Yi, M.J.: Removal of ringing noise in GPR data by signal processing. Geosci. J. 11(1), 75–81 (2007)CrossRefGoogle Scholar
  17. Lesselier, D., Duchene, B.: Wavefield inversion of objects in stratified environments: from back-propagation schemes to full solutions. In: Stone, R. (ed.) Review of Radio Science 1993–1996. Oxford University Press, Oxford (1996)Google Scholar
  18. Leucci, G., Masini, N., Persico, R., Soldovieri, F.: GPR and sonic tomography for structural restoration: the case of the Cathedral of Tricarico. J. Geophys. Eng. 8, S76–S92 (2011)CrossRefGoogle Scholar
  19. Liseno, A., Tartaglione, F., Soldovieri, F.: Shape reconstruction of 2D buried objects under a Kirchhoff approximation. IEEE Geosci. Remote Sens. Lett. 1(2), 118–121 (2004)CrossRefGoogle Scholar
  20. Manacorda, G., Miniati, M.: An easy way of checking impulsive GPR performance. In: Proceedings of VIII International Conference on Ground Penetrating Radar, Gold Coast, Australia (2000)Google Scholar
  21. Manacorda, G., Simi, A., Benedetto, A.: Bridge deck survey with high resolution ground penetrating radar. In: 14th International Conference on Ground Penetrating Radar, GPR2012, Shanghai, China (2012)Google Scholar
  22. Meincke, P.: Linear GPR inversion for lossy soil and a planar air-soil interface. IEEE Trans. Geosci. Remote Sens. 39(12), 2713–2721 (2001)CrossRefGoogle Scholar
  23. Parrillo, R., Roberts, R. Haggan, A.: Bridge deck condition assessment using Ground Penetrating Radar. ECNDT T.4.2.5 (2006)Google Scholar
  24. Parrini, F., Persico, R., Pieraccini, M., Spinetti, A., Macaluso, G., Fratini, M., Dei, D., Manacorda, G.: A reconfigurable stepped frequency GPR (GPR-R). In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium IGARSS 2011, Vancouver, Canada (2011)Google Scholar
  25. Persico, R.: On the role of measurement configuration in contactless GPR data processing by means of linear inverse scattering. IEEE Trans. Antennas Propag. 54(7), 2062–2071 (2006)CrossRefGoogle Scholar
  26. Persico, R.: Introduction to Ground Penetrating Radar: Inverse Scattering and data processing. Wiley, New York (2014). ISBN 9781118305003CrossRefGoogle Scholar
  27. Persico, R., Prisco, G.: A reconfigurative approach for SF-GPR prospecting. IEEE Trans. Antennas Propag. 56(8), 2673–2680 (2008)CrossRefGoogle Scholar
  28. Persico, R., Leucci, G., Matera, L., Ciminale, M., Dei, D., Parrini, F., Pieraccini, M.: Applications of a reconfigurable stepped frequency GPR in the Chapel of the Holy Spirit, Lecce (Italy). In: Proceedings of VII International Workshop on Advanced Ground Penetrating Radar, Nantes, France, 3–5 July 2013Google Scholar
  29. Persico, R., Sala, J.: The problem of the investigation domain subdivision in 2D linear inversions for large scale GPR data. IEEE Geosci. Remote Sens. Lett. (2014). doi: 10.1109/LGRS.2013.2290008 (in print)
  30. Persico, R., Soldovieri, F.: One-dimensional inverse scattering with a Born model in a three-layered medium. J. Opt. Soc. Am. Part A 21(1), 35–45 (2004)CrossRefMathSciNetGoogle Scholar
  31. Persico, R., Soldovieri, F.: Effects of the background removal in linear inverse scattering. IEEE Trans. Geosci. Remote Sens. 46(4), 1104–1114 (2008)CrossRefGoogle Scholar
  32. Persico, R., Soldovieri, F., Pierri, R.: Convergence properties of a quadratic approach to the inverse scattering problem. J. Opt. Soc. Am. Part A 19(12), 2424–2428 (2002)CrossRefGoogle Scholar
  33. Persico, R., Bernini, R., Soldovieri, F.: On the configuration of the measurements in inverse scattering from buried objects under the distorted Born approximation. IEEE Trans. Antennas Propag. 53(6), 1875–1886 (2005)CrossRefGoogle Scholar
  34. Persico, R., Romano, N., Soldovieri, F.: Design of a balun for a bow tie antenna in reconfigurable ground penetrating radar systems. Prog. Electromagnet. Res C. 18, 123–135 (2011)CrossRefGoogle Scholar
  35. Persico, R., Ciminale, M., Matera, L.: A new reconfigurable stepped frequency GPR system, possibilities and issues; applications to two different Cultural Heritage Resources. Near Surf. Geophys. 12, 793–801 (2014). doi: 10.3997/1873-0604.2014035
  36. Pieraccini, M., Noferini, L., Mecatti, D., Atzeni, C., Persico, R., Soldovieri, F.: Advanced processing techniques for step-frequency continuous-wave penetrating radar: the case study of “Palazzo Vecchio” Walls (Firenze, Italy). Res. Nondestr. Eval. 17, 71–83 (2006)CrossRefGoogle Scholar
  37. Prisco, G., Persico, R.: Reconfigurable stepped frequency GPR systems. In: 12th International Conference on Ground Penetrating Radar, GPR2008, Birmingham, UK (2008)Google Scholar
  38. Qin, H.H., Cakoni, F.: Nonlinear integral equations for shape reconstruction in the inverse interior scattering problem. Inverse Prob. 27, 1–17 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  39. Roberts, R.L., Daniels, J.J.: Analysis of GPR polarization phenomena. J. Environ. Eng. Geophys. 1, 139–157 (1996)CrossRefGoogle Scholar
  40. Roqueta, G., Jofre L., Feng, M.: Microwave Nondestructive evaluation of corrosion in reinforced concrete structures. In: Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), pp. 787–791 (2011)Google Scholar
  41. Sala, J., Linford, N.: Processing stepped frequency continuous wave GPR systems to obtain maximum value from archaeological data sets. Near Surf. Geophys. 10, 3–10 (2012)CrossRefGoogle Scholar
  42. Sandmeier K.J.: Reflexw 3.0 manual Sandmeier Software ZipserStrabe1 D-76227 Karlsruhe Germany (2003)Google Scholar
  43. Schneider, W.A.: Integral formulation for migration in two and three dimensions. Geophysics 43(1), 49–76 (1978)CrossRefGoogle Scholar
  44. Sheriff, R.E.: Nomogram for fresnel-zone calculation. Geophysics 45(5), 968–972 (1980)CrossRefGoogle Scholar
  45. Stolt, R.H.: Migration by fourier transform. Geophysics 43(1), 23–48 (1978)CrossRefGoogle Scholar
  46. Utsi, E.: The shrine of Edward the confessor: a study in multi-frequency GPR investigation. Near Surf. Geophys. 10, 65–75 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Guido Manacorda
    • 1
    Email author
  • Raffaele Persico
    • 2
  • Howard F. Scott
    • 3
  1. 1.Georadar DivisionIDS Ingegneria Dei Sistemi S.p.A.PisaItaly
  2. 2.Institute for Archaeological and Monumental Heritage IBAM-CNR via MonteroniCampus UniversitarioLecceItaly
  3. 3.OSYS Technology Ltd.Newcastle upon TyneUK

Personalised recommendations