Skip to main content

Introduction to Optimal Transport

  • Chapter
  • First Online:
Sub-Riemannian Geometry and Optimal Transport

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

  • 1718 Accesses

Abstract

This Chapter is concerned with the study of optimal transport maps in the sub-Riemannian setting. We first provide a course in optimal transport theory. Then we study the well-posedness of the Monge problem for sub-Riemannian quadratic costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrachev, A., Lee, P.: Optimal transportation under nonholonomic constraints. Trans. Amer. Math. Soc. 361(11), 6019–6047 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambrosio, L., Rigot, S.: Optimal transportation in the Heisenberg group. J. Funct. Anal. 208(2), 261–301 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bernard, P., Buffoni, B.: Optimal mass transportation and Mather theory. J. Eur. Math. Soc. 9(1), 85–121 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Billingsley, P.: Convergence of Probability Measures, 2nd edn. John Wiley & Sons Inc., New York (1999)

    Book  MATH  Google Scholar 

  5. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44, 375–417 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cannarsa, P., Rifford, L.: Semiconcavity results for optimal control problems admitting no singular minimizing controls. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(4), 773–802 (2008)

    Google Scholar 

  7. Cannarsa, P., Sinestrari, C.: Semiconcave functions, Hamilton-Jacobi equations, and optimal control. Progress in Nonlinear Differential Equations and their Applications, vol. 58. Birkhäuser, Boston (2004)

    Google Scholar 

  8. Champion, T., De Pascale, L.: The Monge problem in \({\mathbb{R}}^d\). Duke Math. J. 157(3), 551–572 (2011)

    Google Scholar 

  9. Chitour, Y., Jean, F., Trélat, E.: Genericity results for singular curves. J. Differ. Geom. 73(1), 45–73 (2006)

    MATH  Google Scholar 

  10. De Pascale, L., Rigot, S.: Monge’s transport problem in the Heisenberg group. Adv. Calc. Var. 4(2), 195–227 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Evans, L.C., Gariepy, R.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton, FL (1992)

    MATH  Google Scholar 

  12. Figalli, A., Rifford, L.: Mass transportation on sub-Riemannian manifolds. Geom. Funct. Anal. 20(1), 124–159 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gangbo, W., McCann, R.J.: The geometry of optimal transportation. Acta Math. 177(2), 113–161 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jean, F.: Control of nonholonomic systems and sub-Riemannian geometry. Lectures given at the CIMPA School “Géométrie sous-riemannienne”, Beirut, Lebanon (2012)

    Google Scholar 

  15. Kantorovitch, L.: On the translocation of masses. C.R. (Doklady) Acad. Sci. URSS 37, 199–201 (1942)

    Google Scholar 

  16. McCann, R.J.: Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11(3), 589–608 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mitchell, J.: On Carnot-Carathéodory metrics. J. Differ. Geom. 21(1), 35–45 (1985)

    MATH  Google Scholar 

  18. Monge, G.: Mémoire sur la théorie des déblais et des remblais. Histoire de l’Académie Royale des Sciences de Paris, pp. 666–704 (1781)

    Google Scholar 

  19. Montgomery, R.: A tour of subriemannian geometries, their geodesics and applications. Mathematical Surveys and Monographs, vol. 91. American Mathematical Society, Providence, RI (2002)

    Google Scholar 

  20. Pratelli, A.: On the equality between Monge’s infimum and Kantorovitch’s minimum in optimal mass transportation. Ann. Inst. H. Poincaré Probab. Statist. 43(1), 1–13 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Rifford, L.: À propos des sphères sous-riemanniennes. Bull. Belg. Math. Soc. Simon Stevin 13(3), 521–526 (2006)

    MATH  MathSciNet  Google Scholar 

  22. Rifford, L., Trélat, E.: On the stabilization problem for nonholonomic distributions. J. Eur. Math. Soc. 11(2), 223–255 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rockafellar, R.T.: Characterization of the subdifferentials of convex functions. Pacific J. Math. 17, 497–510 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  24. Villani, C.: Optimal Transport, Old and New. Springer-Verlag, Heidelberg (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludovic Rifford .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Rifford, L. (2014). Introduction to Optimal Transport. In: Sub-Riemannian Geometry and Optimal Transport. SpringerBriefs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-04804-8_3

Download citation

Publish with us

Policies and ethics