Skip to main content

Hyperspectral Image Classification Using Extreme Learning Machine and Conditional Random Field

  • Chapter
  • First Online:
Extreme Learning Machines 2013: Algorithms and Applications

Part of the book series: Adaptation, Learning, and Optimization ((ALO,volume 16))

Abstract

Recent studies show that extreme learning machine (ELM) is a suitable, effective, and less time-consuming classifier with a wide range of applications. This chapter addresses the application of ELM to the remotely sensed hyperspectral image classification. In this chapter, the proposed hyperspectral image classification method consists of three steps: First, a semi-supervised feature extract algorithm is used for dimensionality reduction; Second, ELM is taken as a classifier; Finally, conditional random field (CRF) is taken to smooth the result of ELM classifier, where the probability estimation over each class obtained by ELM is used as unary potential function of CRF. The experimental results show that the proposed hyperspectral image classification method using both ELM and CRF achieves good classification performance on two real hyperspectral data sets in comparison to the methods using SVM and CRF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html

References

  1. P.H. Hsu, Feature extraction of hyperspectral images using wavelet and matching pursuit. ISPRS J. photogramm. Remote Sens. 62(2), 78–92 (2007)

    Article  Google Scholar 

  2. D.A. Landgrebe, Signal Theory Methods in Multispectral Remote Sensing, vol. 29 (Wiley Interscience, Hoboken, 2005)

    Google Scholar 

  3. G. CampsValls, L. Bruzzone, Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 43(6), 1351–1362 (2005)

    Article  Google Scholar 

  4. R.A. Fisher, The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(2), 179–188 (1936)

    Article  Google Scholar 

  5. E.M. Mikhail, J.S. Bethel, J.C. McGlone, Introduction to Modern Photogrammetry (Wiley, New York, 2001)

    Google Scholar 

  6. B.C. Kuo, D.A. Landgrebe, Nonparametric weighted feature extraction for classification. IEEE Trans. Geosci. Remote Sens. 42(5), 1096–1105 (2004)

    Article  Google Scholar 

  7. G. Baudat, F. Anouar, Generalized discriminant analysis using a kernel approach. Neural Comput. 12(10), 2385–2404 (2000)

    Article  Google Scholar 

  8. K. Fukunaga, J.M. Mantock, Nonparametric discriminant analysis. IEEE Trans. Pattern Anal. Mach. Intell. 6, 671–678 (1983)

    Article  Google Scholar 

  9. S.C. Yan, D. Xu, B.Y. Zhang, H.J. Zhang, Q. Yang, S. Lin, Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 40–51 (2007)

    Article  Google Scholar 

  10. M. Sugiyama, Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis. J. Mach. Learn. Res. 8, 1027–1061 (2007)

    MATH  Google Scholar 

  11. C. Lee, D.A. Landgrebe, Feature extraction based on decision boundaries. IEEE Trans. Pattern Anal. Mach. Intell. 15(4), 388–400 (1993)

    Article  Google Scholar 

  12. H. Hotelling, Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24, 417–441 (1993)

    Article  Google Scholar 

  13. J. Wang, C.I. Chang, Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 44(6), 1586–1600 (2006)

    Article  Google Scholar 

  14. L. Yang, Alignment of overlapping locally scaled patches for multidimensional scaling and dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 438–450 (2008)

    Article  Google Scholar 

  15. D. Seung, L. Lee, Algorithms for nonnegative matrix factorization. Adv. Neural Inf. Process. Syst. 13, 556–562 (2001)

    Google Scholar 

  16. B. Schölkopf, A. Smola, K.R. Müller, Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)

    Article  Google Scholar 

  17. J.B. Tenenbaum, V. De Silva, J.C. Langford, A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  18. L.S. Qiao, S.C. Chen, X.Y. Tan, Sparsity preserving projections with applications to face recognition. Pattern Recognit. 43(1), 331–341 (2010)

    Article  MATH  Google Scholar 

  19. S.P. Yu, K. Yu, V. Tresp, H.P. Kriegel, M.R. Wu, Supervised probabilistic principal component analysis, in Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, New York, 2006), pp. 464–473

    Google Scholar 

  20. J. A. Costa, A.O. Hero III, Classification constrained dimensionality reduction, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005 (ICASSP’05) vol. 5 (IEEE, 2005), pp. v-1077

    Google Scholar 

  21. D.Q. Zhang, Z.H. Zhou, S.C. Chen, Semi-supervised dimensionality reduction, in Proceedings of the 7th SIAM International Conference on Data Mining (2007), pp. 629–634

    Google Scholar 

  22. C.H. Li, B.C. Kuo, C.T. Lin, C.S. Huang, A spatial-contextual support vector machine for remotely sensed image classification. IEEE Trans. Geosci. Remote Sens. 50(3), 784–799 (2012)

    Article  Google Scholar 

  23. J. Lafferty, A. McCallum, F.C. Pereira, Conditional random fields: probabilistic models for segmenting and labeling sequence data, in Proceedings of the Eighteenth International Conference on Machine Learning (2001), pp. 282–289

    Google Scholar 

  24. P. Zhong, R.S. Wang, Learning conditional random fields for classification of hyperspectral images. IEEE Trans. Image Process. 19(7), 1890–1907 (2010)

    Article  MathSciNet  Google Scholar 

  25. C.H. Lee, M. Schmidt, A. Murtha, A. Bistritz, J. Sander, R. Greiner, Segmenting brain tumors with conditional random fields and support vector machines, in Computer Vision for Biomedical Image Applications (Springer, 2005), pp. 469–478

    Google Scholar 

  26. Z.C. Li, J.W. Ma, R. Zhang, L.W. Li, Classifying hyperspectral data using support vector machine conditional random field. Geomat. Inf. Sci. Wuhan Univ. 36(3), 306–310 (2011)

    Google Scholar 

  27. G.B. Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: theory and applications. Neurocomputing 70(1), 489–501 (2006)

    Article  Google Scholar 

  28. S.G. Chen, D.Q. Zhang, Semisupervised dimensionality reduction with pairwise constraints for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 8(2), 369–373 (2011)

    Article  Google Scholar 

  29. B. Fulkerson, A. Vedaldi, S. Soatto, Class segmentation and object localization with superpixel neighborhoods, in IEEE 12th International Conference on Computer Vision, 2009 (IEEE, 2009), pp. 670–677

    Google Scholar 

  30. J. Shotton, J. Winn, C. Rother, A. Criminisi, Textonboost: joint appearance, shape and context modeling for multi-class object recognition and segmentation, in Computer Vision-ECCV 2006 (Springer, 2006), pp. 1–15

    Google Scholar 

Download references

Acknowledgments

We are grateful for financial support from the National Nature Science Foundation of China under Grant No. 61101202 and the National Technology Research and Development Program of China under Grant No. 2012AA01A510.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhisong Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, Y., Yu, L., Li, D., Pan, Z. (2014). Hyperspectral Image Classification Using Extreme Learning Machine and Conditional Random Field. In: Sun, F., Toh, KA., Romay, M., Mao, K. (eds) Extreme Learning Machines 2013: Algorithms and Applications. Adaptation, Learning, and Optimization, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-04741-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04741-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04740-9

  • Online ISBN: 978-3-319-04741-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics