Advertisement

ELM for Retinal Vessel Classification

Chapter
Part of the Adaptation, Learning, and Optimization book series (ALO, volume 16)

Abstract

Robust image segmentation can be achieved by pixel classification based on features extracted from the image. Retinal vessel quantification is an important component of retinal disease screening protocols. Some vessel parameters are potential biomarkers for the diagnosis of several diseases. Specifically, the arterio-venular ratio (AVR) has been proposed as a biomarker for Diabetic retinopathy and other diseases. Classification of retinal vessel pixels into arteries or veins is required for computing AVR. This chapter compares Extreme Learning Machines (ELM) with other state-of-the-art classifier building approaches for this tasks, finding that ELM approaches improve over most of them in classification accuracy and computational time load. Experiments are performed on a well known benchmark dataset of retinal images.

Keywords

Retinal vessels Arterio-venular ratio Biomarkers ELM 

References

  1. 1.
    Available online at EIML Group. The op-elm toolbox. http://www.cis.hut.fi/projects/eiml/research/downloads/op-elm-toolbox 2009
  2. 2.
    P. Bankhead, C.N. Scholfield, J.G. McGeown, T.M. Curtis, Fast retinal vessel detection and measurement using wavelets and edge location refinement. PloS one 7(3), e32435 (2012)Google Scholar
  3. 3.
    M.A. David, The relationship between variable selection and data augmentation and a method for prediction. Technometrics 16(1), 125–127 (1974)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    M.M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanonvara, A.R. Rudnicka, C.G. Owen, S.A. Barman, Blood vessel segmentation methodologies in retinal images-a survey. Comput. Methods Programs Biomed. 108(1), 407–433 (2012)CrossRefGoogle Scholar
  5. 5.
    Guangbin Huang. ELM Homepage. http://www.ntu.edu.sg/home/egbhuang/elm_codes.html 2012
  6. 6.
    A.E. Hoerl, Application of ridge analysis to regression problems. Chem. Eng. Prog. 58, 54–59 (1962)Google Scholar
  7. 7.
    G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)Google Scholar
  8. 8.
    G.-B. Huang, H. Zhou, X. Ding, R. Zhang, Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. 42(2), 513–529 (2012)CrossRefGoogle Scholar
  9. 9.
    D. Larry, D.L. Hubbard, R.J. Brothers, W.N. King, L.X. Clegg, R. Klein, L.S. Cooper, A.R. Sharrett, M.D. Davis, J. Cai, Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the atherosclerosis risk in communities study. Ophthalmology 106(12), 2269–2280 (1999)CrossRefGoogle Scholar
  10. 10.
    G. Liew, J.J. Wang, P. Mitchell, T.Y. Wong. Retinal vascular imaging a new tool in microvascular disease research. Circ. Cardiovasc. Imaging 1(2), 156–161 (2008)Google Scholar
  11. 11.
    G. Liew, J.J. Wang, Retinal vascular signs: a window to the heart? Revista Española de Cardiología (English Edition) 64(6), 515–521 (2011)CrossRefGoogle Scholar
  12. 12.
    Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, A. Lendasse, Op-elm: Optimally pruned extreme learning machine. IEEE Trans. Neural Networks 21(1), 158–162 (2010)CrossRefGoogle Scholar
  13. 13.
    M. Niemeijer, B. van Ginneken, M.D. Abràmoff, Automatic classification of retinal vessels into arteries and veins. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 72601F (2009)Google Scholar
  14. 14.
    E. Ricci, R. Perfetti, Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans. Medical Imaging 26(10), 1357–1365 (2007)Google Scholar
  15. 15.
    M. Saez, G-V. Sonia, G-P. Manuel, M.A. Barceló, P-S. Marta, G. Coll de Tuero, P-R. Antonio, Development of an automated system to classify retinal vessels into arteries and veins. Comput. Methods Programs Biomed. 108(1), 367–376 (2012)Google Scholar
  16. 16.
    T.T. Thanh, T.Y. Wong, Retinal vascular manifestations of metabolic disorders. Trends Endocrinol. Metab. 17(7), 262 (2006)CrossRefGoogle Scholar
  17. 17.
    A. Tikhonov, Solution of inc orrectly formulated problems and the regularization method. Sov. Math. Doklady 5, 1035–1038 (1963)MATHGoogle Scholar
  18. 18.
    K.-A. Toh, Deterministic neural classification. Neural Comput. 20(6), 1565–1595 (2008)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    A. Zamperini, A. Giachetti, E. Trucco, K.S. Chin, Effective features for artery-vein classification in digital fundus images. 25th International Symposium on Computer-Based Medical Systems (CBMS), 1–6 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Vicomtech-Ik4 FoundationPaís VascoSpain
  2. 2.Computational Intelligence Group (UPV/EHU)País VascoSpain
  3. 3.ULMA GroupOñatiSpain

Personalised recommendations