Proposition of an Analysis Framework to Describe the “Activeness” of a Product during Its Life Cycle

Part I: Motivations and Modelling
  • Yves Sallez
Part of the Studies in Computational Intelligence book series (SCI, volume 544)


Recent advances in infotronics and communication have enabled the development of “intelligent” products. However, there is no clear and unanimous definition of an “intelligent” product. This paper reviews the different typologies used in this field and points out their main limitations. An analysis framework based on the concept of “activeness” is then proposed. This framework describes the situation of interaction between a collective of “active” products and a support system for a given function and a given phase of the life cycle.


Typology analysis framework activeness concept intelligent product 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bajic, E.: Ambient Networking for intelligent objects management, mobility and services. Seminar Institute for Manufacturing - IfM, University of Cambridge (2004)Google Scholar
  2. 2.
    Sundmaeker, H., Guillemin, P., Friess, P., Woelfflé, S. (eds.): CERP-IOT (Cluster of European Research Projects on the Internet of Things): Vision and Challenges for Realising the Internet of Things (2010) Google Scholar
  3. 3.
    Fiske, A.P.: The four elementary forms of sociality: Framework for a unified theory of social relations. Psychological Review 9(4), 689–723 (1992)CrossRefGoogle Scholar
  4. 4.
    Främling, K., Loukkola, J., Nyman, J., Kaustell, A.: Intelligent Products in Real-Life Applications. In: Benyoucef, L., Trentesaux, D., Artiba, A., Rezg, N. (eds.) International conference on Industrial Engineering and Systems Management (IESM 2011), I4E2, Metz, pp. 1444–1453 (2011)Google Scholar
  5. 5.
    Iera, A.: The Social Internet of Things: from objects that communicate to objects that socialize in the Internet. In: Proceedings of 50th FITCE International Congress, Palermo, Italy (2011)Google Scholar
  6. 6.
    Jun, H.-B., Kiritsis, D., Xirouchakis, P.: Research issues on closed-loop PLM. Computers in Industry 58(8-9), 855–868 (2007)CrossRefGoogle Scholar
  7. 7.
    Kawsar, F.: A document based framework for user centric Smart Object Systems, PhD in Computer Science. Waseda University, Japan (2009)Google Scholar
  8. 8.
    Kiritsis, D.: Closed-loop PLM for intelligent products in the era of the internet of things. Computer-Aided Design. 43(5), 479–501 (2011)CrossRefGoogle Scholar
  9. 9.
    Koestler, A.: The Ghost in the Machine. Hutchinson, London (1967)Google Scholar
  10. 10.
    Kortuem, G., Kawsar, F., Fitton, D., Sundramoorthy, V.: Smart objects as building blocks for the internet of things. Internet Computing IEEE 14(1), 44–51 (2010)Google Scholar
  11. 11.
    Le Moigne, J.L.: La théorie du système général – théorie de la modélisation. Ed. Presses universitaires de France, 1ère éd. 1977, 4ème éd (1994)Google Scholar
  12. 12.
    McFarlane, D., Sarma, S., Chirn, J.L., Wong, C.Y., Ashton, K.: Auto id systems and intelligent manufacturing control. Engineering Applications of Artificial Intelligence 16(4), 365–376 (2003)CrossRefGoogle Scholar
  13. 13.
    Meyer, G.G., Främling, K., Holmström, J.: Intelligent Products: A survey. Computers in Industry 60(3), 137–148 (2009)CrossRefGoogle Scholar
  14. 14.
    Salkham, A., Cunningham, R., Senart, A., Cahill, V.: A Taxonomy of Collaborative Context-Aware Systems. In: Proceedings of the CAISE 2006 Workshop on Ubiquitous Mobile Information and Collaboration Systems, UMICS 2006, Luxemburg, pp. 899–911 (2006)Google Scholar
  15. 15.
    Sallez, Y., Berger, T., Deneux, D., Trentesaux, D.: The lifecycle of active and intelligent products: The augmentation concept. International Journal of Computer Integrated Manufacturing 23(10), 905–924 (2010)CrossRefGoogle Scholar
  16. 16.
    Sallez, Y.: The Augmentation Concept: How to make a Product “Active” during its Life Cycle. In: Borangiu, T., Thomas, A., Trentesaux, D. (eds.) Service Orientation in Holonic and Multi-Agent Manufacturing Control. SCI, vol. 402, pp. 35–48. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Sallez, Y.: Proposition of an analysis framework to describe the “Activeness” of a product during its life cycle - Part II: Method and applications. In: Proceedings of SOHOMA (Service Orientation in Holonic and Multi-Agent Manufacturing Control), Valenciennes (2013)Google Scholar
  18. 18.
    Sánchez López, T., Ranasinghe, D.C., Patkai, B., McFarlane, D.: Taxonomy, technology and applications of smart objects. Information Systems Frontiers 13(2), 281–300 (2011)Google Scholar
  19. 19.
    Strohbach, M., Gellersen, H., Kortuem, G., Kray, C.: Cooperative artefacts: Assessing real world situations with embedded technology. In: Mynatt, E.D., Siio, I. (eds.) UbiComp 2004. LNCS, vol. 3205, pp. 250–267. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Wong, C.Y., McFarlane, D., Zaharudin, A.A., Agarwal, V.: The Intelligent Product Driven Supply Chain. In: IEEE International Conference on Systems, Man and Cybernetics, Hammamet, Tunisia (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yves Sallez
    • 1
    • 2
  1. 1.Univ. Lille Nord de FranceLilleFrance
  2. 2.TEMPO Lab, “Production, Services, Information” teamUVHCValenciennesFrance

Personalised recommendations