Skip to main content

Introduction to the Fundamentals of Laboratory Bioassays

  • Chapter
  • First Online:
  • 815 Accesses

Abstract

This chapter describes and provides comments on the following basic features of laboratory bioassays: (a) biotic and physicochemical factors, (b) test materials, (c) measurements, hypotheses, experimental designs, and data analyses, and (d) basic information that should be provided by researchers for all bioassays.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdul-Wahab AS, Rice EL (1967) Plant inhibition by Johnson grass and its possible significance in old-field succession. Bull Torrey Bot Club 94:486–497

    Google Scholar 

  • Al-Naib FA, Rice EL (1971) Allelopathic effects of Platanus occidentalis. Bull Torrey Bot Club 98:75–82

    Google Scholar 

  • Alexander M (1977) Introduction to soil microbiology, 2nd edn. Wiley, New York

    Google Scholar 

  • An M, Pratley JE, Haig T (2000) Phytotoxicity of Vulpia residues, IV: dynamics of allelochemicals during decomposition of Vulpia residues and their corresponding phytotoxicity. J Chem Ecol 26:2603–2617

    CAS  Google Scholar 

  • Arias HOR, De LaVega L, Ruiz O, Wood K (1999) Differential nodulation response and biomass yield of Alexandria clover as affected by levels of inorganic nitrogen fertilizer. J Plant Nutr 22:1233–1239

    CAS  Google Scholar 

  • Badri DV, Zolla G, Bakker MG, Manter DK, Vivanco JM (2013) Potential impact of soil microbiomes on the leaf metabolome and herbivore feeding behavior. New Phytol 198:264–273

    CAS  Google Scholar 

  • Bago B, Cano C, Azcón-Aguilar C, Samson J, Coughlan AP, Piché Y (2004) Differential morphogenesis of the extraradical mycelium of an arbuscular mycorrhizal fungus grown monoxenically on spatially heterogeneous bioassay media. Mycologia 96:452–462

    Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    CAS  Google Scholar 

  • Barazani O, Friedman J (1999) Allelopathic bacteria. In: Inderjit, Daskshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, pp 149–163

    Google Scholar 

  • Barber DA, Gunn KB (1974) The effects of mechanical forces on the exudation of organic substances by roots of cereal plants grown under sterile conditions. New Phytol 73:39–45

    CAS  Google Scholar 

  • Barber DA, Martin JK (1976) The release of organic substances by cereal roots in soil. New Phytol 76:69–80

    CAS  Google Scholar 

  • Barnes JP, Putnam AR (1987) Role of benzoxazinones in allelopathy by rye (Secale cereale L.). J Chem Ecol 13:889–906

    CAS  Google Scholar 

  • Barto EK, Weidenhamer JD, Cipollini D, Rillig MC (2012) Fungal superhighways: do common mycrorrhizal networks enhance below ground communication? Trends Plant Sci 17:633–637

    CAS  Google Scholar 

  • Bates TE (1971) Factors affecting critical nutrient concentrations in plants and their evaluation: a review. Soil Sci 112:116–130

    CAS  Google Scholar 

  • Bell DT, Koeppe DE (1972) Noncompetitive effects of giant foxtail on the growth of corn. Agron J 64:321–325

    Google Scholar 

  • Belz RG (2008) Stimulation versus inhibition—bioactivity of parthenin, a phytochemical from Parthenium hysterophorus L. Dose-Response 6:80–96

    CAS  Google Scholar 

  • Belz RG, Hurle K, Duke SO (2005) Dose-response—a challenge for allelopathy. Nonlinearity Biol Toxicol Med 3:173–211

    CAS  Google Scholar 

  • Belz RG, Velini ED, Duke SO (2007) Dose/response relationships in allelopathy research. In: Fujii Y, Hiradate S (eds) Allelopathy: new concepts and methodologies. Science Publishers, Enfield, pp 3–29

    Google Scholar 

  • Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    CAS  Google Scholar 

  • Bertran HC, Weisbjerg MR, Jensen CS, Pedersen MG, Didion T, Petersen BO, Duus JØ, Larsen MK, Nielsen JH (2010) Seasonal changes in the metabolic fingerprint of 21 grass and legume cultivars studied by nuclear magnetic resonance-based metabolomics. J Agric Food Chem 58:4336–4341

    Google Scholar 

  • Blum U (1996) Allelopathic interactions involving phenolic acids. J Nematol 28:259–267

    CAS  Google Scholar 

  • Blum U (1997) The benefits of citrate over EDTA for extracting phenolic acids from soils and plant debris. J Chem Ecol 23:347–362

    CAS  Google Scholar 

  • Blum U (1999) Designing laboratory plant debris-soil bioassays: some reflections. In: Inderjit, Daskshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, pp 17–23

    Google Scholar 

  • Blum U (2004) Fate of phenolic allelochemicals in soils-the role of the soil and rhizosphere microorganisms. In: Maciás FA, Galindo JCG, Molinillo JMG, Cutler HG (eds) Allelopathy: chemistry and mode of action of allelopathic chemicals. CRC Press, Boca Raton, pp 57–76

    Google Scholar 

  • Blum U (2006) Allelopathy: a soil system perspective. In: Reigosa MJ, Pedrol N, González L (eds) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht, pp 299–340

    Google Scholar 

  • Blum U (2007) Can data derived from field and laboratory bioassays establish the existence of allelopathic interactions in nature? In: Fujii Y, Hiradate S (eds) Allelopathy: new concepts and methodologies. Science Publishers, Enfield, pp 31–38

    Google Scholar 

  • Blum U (2011) Plant-plant allelopathic interactions: phenolic acids, cover crops, and weed emergence. Springer Science and Business Media, Dordrecht

    Google Scholar 

  • Blum U, Heck WW (1980) Effects of acute ozone on snap bean at various stages of its life cycle. Environ Exp Bot 20:73–85

    CAS  Google Scholar 

  • Blum U, Rice EL (1969) Inhibition of symbiotic nitrogen-fixation by gallic and tannic acid, and possible roles in old-field succession. Bull Torrey Bot Club 96:531–544

    CAS  Google Scholar 

  • Blum U, Shafer SR (1988) Microbial populations and phenolic acids in soils. Soil Biol Biochem 20:793–800

    CAS  Google Scholar 

  • Blum U, Dalton BR, Rawlings JO (1984) Effects of ferulic acid and some of its microbial metabolic products on radicle growth of cucumber. J Chem Ecol 8:1169–1191

    Google Scholar 

  • Blum U, Gerig TM, Weed SB (1989) Effects of mixtures of phenolic acids on leaf expansion of cucumber seedlings grown in different pH Portsmouth A1 soil materials. J Chem Ecol 15:2413–2423

    CAS  Google Scholar 

  • Blum U, Wentworth TR, Klein K, Worsham AD, King LD, Gerig TM, Lyu S-W (1991) Phenolic acid content of soils from wheat-no till, wheat-conventional till, and fallow-conventional till soybean cropping systems. J Chem Ecol 17:1045–1068

    CAS  Google Scholar 

  • Blum U, Gerig TM, Worsham AD, Holappa LD, King LD (1992) Allelopathic activity in wheat-conventional and wheat-no-till soils: development of soil extract bioassays. J Chem Ecol 18:2191–2221

    CAS  Google Scholar 

  • Blum U, Gerig TM, Worsham AD, King LD (1993) Modification of allelopathic effects of p-coumaric acid on morning-glory seedling biomass by glucose, methionine, and nitrate. J Chem Ecol 19:2791–2811

    CAS  Google Scholar 

  • Blum U, Worsham AD, King LD, Gerig TM (1994) Use of water and EDTA extractions to estimate available (free and reversibly bound) phenolic acids in Cecil soils. J Chem Ecol 20:341–359

    CAS  Google Scholar 

  • Blum U, King LD, Gerig TM, Lehman ME, Worsham AD (1997) Effects of clover and small grain cover crops and tillage techniques on seedling emergence of some dicotyledonous weed species. Am J Altern Agric 12:146–161

    Google Scholar 

  • Blum U, Austin MF, Shafer SR (1999) The fate and effects of phenolic acids in a plant-microbial-soil model system. In: Macías FA, Galindo JCG, Molinillo JMG, Cutler HG (eds) Recent advances in allelopathy I: a science for the future. Cádiz University Press, Puerto Real, pp 159–166

    Google Scholar 

  • Böhm W (1979) Methods of studying root systems. Springer, Berlin

    Google Scholar 

  • Bollman MI, Vessey JK (2006) Differential effects of nitrate and ammonium supply on nodule initiation, development, and distribution on roots of pea (Pisum sativum). Can J Bot 84:893–903

    CAS  Google Scholar 

  • Bonanomi G, Sicurezza MG, Caporaso S, Esposito A, Mazzolenti S (2006) Phytotoxicity dynamics of decaying plant materials. New Phytol 169:571–578

    CAS  Google Scholar 

  • Bonner J, Galston AW (1944) Toxic substances from the bioassay media of guayule which may inhibit growth. Bot Gaz 106:185–198

    CAS  Google Scholar 

  • Börner H (1960) Liberation of organic substances from higher plants and their role in the soil sickness problem. Bot Rev 26:393–424

    Google Scholar 

  • Brady NC (1984) The nature and properties of soils, 9th edn. MacMillian Publishing Company, New York

    Google Scholar 

  • Buchanan M, King LD (1993) Carbon and phosphorus losses from decomposing crop residues in no-till and conventional till agroecosystems. Agron J 85:631–638

    CAS  Google Scholar 

  • Buckman HO, Brady NC (1965) The nature and properties of soils. The Macmillan Company, New York

    Google Scholar 

  • Carvalhais LC, Dennis PG, Fedoseyenko D, Hajirezaei M-R, Borriss R (2011) Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. J Plant Nutr Soil Sci 174:3–11

    CAS  Google Scholar 

  • Chaves N, Escudero JC (1999) Variation of flavonoids synthesis induced by ecological factors. In: Inderjit, Daskshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, pp 267–285

    Google Scholar 

  • Chaves N, Escudero JC, Gutierrez-Merino C (1997) Role of ecological variables in the seasonal variation of flavonoid content of Cistus ladanifer exudates. J Chem Ecol 23:579–603

    CAS  Google Scholar 

  • Chen F, Liu C-J, Tschaplinski TJ, Zhao N (2009) Genomics of secondary metabolism in Populus: interactions with biotic and abiotic environments. Crit Rev Plant Sci 28:375–392

    CAS  Google Scholar 

  • Cheng HH (1990) Organic residues in soils: mechanisms of retention and extractability. Int J Environ Anal Chem 39:165–171

    CAS  Google Scholar 

  • Chou CH, Muller CH (1972) Allelopathic mechanisms of Arctostaphylos glandulosa var. zacaensis. Am Midl Nat 88:324–247

    CAS  Google Scholar 

  • Cogbill VC, Likens GE (1974) Acid precipitation in the Northeastern United States. Water Resour Res 10:1133–1137

    CAS  Google Scholar 

  • Coleman DC, Oades JM, Uehara G (1989) Dynamics of soil organic matter in tropical ecosystems. Dept. of Agronomy and Soil Science, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu

    Google Scholar 

  • Cox JA, Conran JG (1996) The effects of water stress on the life cycles of Erodium crinitum Carolina and Erodium cicutarium (L.) L’Hérit. ex Aiton (Geraniaceae). Aust J Eco 21:235–240

    Google Scholar 

  • Cox DR, Donnelly CA (2011) Principles of applied statistics. Cambridge University, Cambridge

    Google Scholar 

  • Czarnota MA, Paul RN, Dayan FE, Nimbal CI, Weston LA (2001) Mode of action, localization of production, chemical nature, and activity of sorgoleone: a potent PSII inhibitor in Sorghum spp. root exudates. Weed Technol 15:813–825

    CAS  Google Scholar 

  • Czarnota MA, Rimando AM, Weston LA (2003) Evaluation of root exudates of seven sorghum accessions. J Chem Ecol 29:2073–2083

    CAS  Google Scholar 

  • Dalton BR (1993) Extraction and behavior of plant phenolic acids in soils. North Carolina State University Thesis, Raleigh

    Google Scholar 

  • Dalton BR (1999) The occurrence and behavior of plant phenolic acids in soil environments and their potential involvement in allelochemical interference interactions: methodological limitations in establishing conclusive proof of allelopathy. In: Inderjit, Daskshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, pp 57–74

    Google Scholar 

  • Dalton BR, Blum U, Weed SB (1983) Allelopathic substances in ecosystems: effectiveness of sterile soil components in altering recovery of ferulic acid. J Chem Ecol 9:1185–1201

    CAS  Google Scholar 

  • Dalton BR, Weed SB, Blum U (1987) Plant phenolic acids in soils: a comparison of extraction procedures. Soil Sci Soc Am J 51:1515–1521

    CAS  Google Scholar 

  • Debyle NV, Hennes RW, Hart GE (1988) Evaluation of ceramic cups for determining soil solution chemistry. Soil Sci 146:30–36

    CAS  Google Scholar 

  • del Moral R, Muller CH (1969) Fog drip: a mechanism of toxin transport from Eucalyptus globulus. Bull Torrey Bot Club 96:467–475

    CAS  Google Scholar 

  • Drossopoulos B, Kouchaji GG, Bouranis DL (1996) Seasonal dynamics of mineral nutrients and carbohydrates by walnut tree leaves. J Plant Nutr 19:493–516

    CAS  Google Scholar 

  • DuBay DT, Heagle AS (1987) The effects of simulated acid rain with and without ambient rain on the growth and yield of field grown soybeans. Environ Exp Bot 27:401–395

    Google Scholar 

  • Duke SO, Cedergreen N, Velini ED, Belz RG (2006, February) Hormesis: is it an important factor in herbicide use and allelopathy? Outlook Pest Manag 17:29–33

    Google Scholar 

  • Duke SO, Baerson SR, Pan Z, Kagan IA, Sánchez-Moreiras A, Reigosa MJ, Pedrol N, Schultz M (2008) Genomic approaches to understanding allelochemical effects on plants. In: Zeng RS, Mallik AU, Luo SM (eds) Allelopathy in sustainable agriculture and forestry. Springer Science Business Media, New York, pp 157–167

    Google Scholar 

  • Duke SO, Bajsa J, Pan Z (2013) Omics methods for probing the mode of action of natural and synthetic phytotoxins. J Chem Ecol 39:333–347

    CAS  Google Scholar 

  • Einhellig FA (1989) Interactive effects of allelochemicals and environmental stress. In: Chou CH, Waller GR (eds) Phytochemical ecology: allelochemicals, mycotoxins, and insect pheromones and allomones, Academia Sinica Monograph Series, vol 9. Institute of Botany, Taipei, pp 101–118

    Google Scholar 

  • Einhellig FA, Kuan L (1971) Effects of scopoletin and chlorogenic acid on stomatal aperture in tobacco and sunflower. Bull Torrey Bot Club 98:155–162

    CAS  Google Scholar 

  • Einhellig FA, Rice EL, Risser PG, Wender SH (1970) Effects of scopoletin on growth, CO2 exchange rates, and concentration of scopoletin, scopolin, and chlorogenic acid in tobacco, sunflower and pigweed. Bull Torrey Bot Club 97:22–23

    CAS  Google Scholar 

  • Ells JE, McSay AE (1991) Allelopathic effects of alfalfa plant residues on emergence and growth of cucumber seedlings. HortScience 26:368–370

    Google Scholar 

  • Fairbairn JW, Wassel G (1964) The alkaloids in Papaver somniferum L I: evidence for rapid turnover of the major alkaloids. Phytochemistry 3:253–258

    CAS  Google Scholar 

  • Fitter AH, Graves JD, Watkins NK, Robinson D, Scrimgeour C (1998) Carbon transfer between plants and its control in networks of arbuscular mycorrhizas. Funct Ecol 12:406–412

    Google Scholar 

  • Flaig W (1971) Organic compounds in soil. Soil Sci 111:19–33

    CAS  Google Scholar 

  • Foth HD (1990) Fundamentals of soil science, 8th edn. Wiley, New York

    Google Scholar 

  • Francis R, Read DJ (1984) Direct transfer of carbon between plants connected by vesicular-arbuscular mycorrhizal mycelium. Nature 307:53–56

    CAS  Google Scholar 

  • Gallet C, Pellissier F (1997) Phenolic compounds in natural solutions of coniferous forest. J Chem Ecol 23:2401–2412

    CAS  Google Scholar 

  • García I, Mendoza R, Pomar MC (2008) Deficit and excess of soil water impact on plant growth of Lotus tenuis by affecting nutrient uptake and arbuscular mycorrhizal symbiosis. Plant Soil 304:117–131

    Google Scholar 

  • Gawronska H, Golisz A (2006) Allelopathy and biotic stresses. In: Reigosa MJ, Pedrol N, González L (eds) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht, pp 211–227

    Google Scholar 

  • Gerig TM, Blum U (1991) Effects of mixtures of four phenolic acids on leaf area expansion of cucumber seedlings grown in Portsmouth B1 soil materials. J Chem Ecol 17:29–40

    CAS  Google Scholar 

  • Gerig TM, Blum U (1993) Modification of an inhibition curve to account for effects of a second compound. J Chem Ecol 19:2783–2790

    CAS  Google Scholar 

  • Gerig TM, Blum U, Meier K (1989) Statistical analysis of the joint inhibitory action of similar compounds. J Chem Ecol 15:2403–2412

    CAS  Google Scholar 

  • Gianinazzi S, Gollotte A, Binet M-N, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    Google Scholar 

  • Gidman E, Goodacre R, Emmett B, Smith AR, Gwynn-Jones D (2003) Investigating plant-plant interference by metabolic fingerprinting. Phytochemistry 63:705–710

    CAS  Google Scholar 

  • Grover BL, Lamborn RE (1970) Preparation of porous ceramic cups to be used for soil extraction of soil water having low solute concentrations. Soil Sci Soc Am Proc 34:706–708

    CAS  Google Scholar 

  • Gryndler M, Hršelová H, Sudová R, Gryndlerová H, Řezáčová V, Merhautová V (2005) Hyphal growth and mycorrhiza formation by the arbuscular mycorrhizal fungus Glomus claroideum BEG 23 is stimulated by humic substances. Mycorrhiza 15:483–488

    CAS  Google Scholar 

  • Guenzi WD, McCalla TM, Norstadt FA (1967) Presence and persistence of phytotoxic substances in wheat, oat, corn, and sorghum residues. Agron J 59:163–165

    CAS  Google Scholar 

  • Hall AB, Blum U, Fites RC (1982) Stress modification of allelopathy of Helianthus annuus L. debris on seed germination. Am J Bot 69:776–783

    Google Scholar 

  • Hall AB, Blum U, Fites RC (1983) Stress modification of allelopathy of Helianthus annuus L. debris on seedling biomass production of Amaranthus retroflexus L. J Chem Ecol 9:1213–1222

    CAS  Google Scholar 

  • Hao ZP, Wang Q, Christie P, Li XL (2007) Allelopathic potential of watermelon tissue and root exudates. Sci Hortic 112:315–320

    CAS  Google Scholar 

  • Hartel PG (1998) The soil habitat. In: Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (eds) Principles and application of soil microbiology. Prentice Hall Inc, New Jersey, pp 21–43

    Google Scholar 

  • Hartley RD, Whitehead DC (1985) Phenolic acids in soils and their influence on plant growth and soil microbial processes. In: Vaughan D, Malcolm RE (eds) Soil organic matter and biological activity. Martinus Nijhoff/Dr W Junk Publishers, Dordrecht, pp 109–149

    Google Scholar 

  • Hasbullah, Marschner P, McNeill A (2011) Legume residues arbuscular mycorrhizal colonization and P uptake by wheat. Biol Fertil Soils 47:701–707

    Google Scholar 

  • Hawkins H-J, George E (1997) Hydroponic bioassay of mycorrhizal fungus Glomus mosseae with Linum usitatissimum L, Sorghum bicolor L, and Triticum aestivum L. Plant Soil 196:143–149

    CAS  Google Scholar 

  • Heisey RM, DeFrank J, Putnam AR (1985) A survey of soil microorganisms for herbicidal activity. In: Thompson AC (ed) The Chemistry of allelopathy: biochemical interactions among plants, ACS Symposium Series, vol 268. American Chemical Society, Washington DC, pp 337–349

    Google Scholar 

  • Hoagland DR, Arnon DJ (1950) The water-bioassay method of growing plants without soil. Calif Agric Exp Sta Circ 347

    Google Scholar 

  • Hoagland RE, Williams RD (1985) The influence of secondary plant compounds on the associations of soil microorganisms and plant roots. In: Thompson AC (ed) The chemistry of allelopathy: biochemical interactions among plants, ACS Symposium Series, vol 268. American Chemical Society, Washington DC, pp 301–325

    Google Scholar 

  • Hocking PJ (1994) Dry-matter production, mineral nutrient concentrations, and nutrient distribution and redistribution in irrigated spring wheat. J Plant Nutr 17:1289–1308

    CAS  Google Scholar 

  • Hodge A, Grayston SJ, Ord BG (1996) A novel method for characterization and quantification of plant root exudates. Plant Soil 184:97–104

    CAS  Google Scholar 

  • Hoffman DW, Lavy TL (1978) Plant competition for atrazine. Weed Sci 26:94–99

    CAS  Google Scholar 

  • Huang Z, Haig T, Wu H, An M, Pratley JE (2003) Correlation between phytotoxicity on annual ryegrass (Lolium rigidum) and production dynamics of allelochemicals within root exudates of allelopathic wheat. J Chem Ecol 29:2263–2279

    CAS  Google Scholar 

  • Huang L-F, Song L-X, Mao W-H, Shi K, Zhou Y-H, Yu J-Q (2013) Plant-soil feedback and soil sickness: from mechanisms to application in agriculture. J Chem Ecol 39:232–242

    CAS  Google Scholar 

  • Hughes S, Reynolds B (1988) Cation exchange properties of porous ceramic cups: implications for field use. Plant Soil 109:141–144

    CAS  Google Scholar 

  • Inderjit (2005) Soil microorganisms: an important determinant of allelopathic activity. Plant Soil 274:227–236

    CAS  Google Scholar 

  • Jalonen R, Nygren P, Sierra J (2009) Transfer of nitrogen from a tropical legume tree to an associated fodder grass via root exudation and common mycelia networks. Plant Cell Environ 32:1366–1376

    CAS  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    CAS  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321:5–33

    CAS  Google Scholar 

  • Kamara AY, Akobundu IO, Sanginga N, Jutzi SC (1999) Effects of mulch from 14 multipurpose tree species (MPTs) on early growth and nodulation of cowpea (Vigna unguiculata L.). J Agron Crop Sci 182:127–133

    CAS  Google Scholar 

  • Kaminsky R, Muller WH (1977) The extraction of soil phytotoxins using a neutral EDTA solution. Soil Sci 124:205–210

    CAS  Google Scholar 

  • Kaur R, Singh RS (2007) Study of induced systemic resistance in Cicer arietinum L. due to nonpathogenic Fusarium oxysporum using a modified split root technique. J Phytopathol 155:694–698

    Google Scholar 

  • Klein K, Blum U (1990) Inhibition of cucumber leaf expansion by ferulic acid in split-root experiments. J Chem Ecol 16:455–463

    CAS  Google Scholar 

  • Koch HJ, Matthiessen A, Baeumer K (1992) Agronomical risks of straw mulch covers in reduced soil tillage systems 1. Influence of chopping intensity of wheat straw on the liberation of phytotoxins. (in German). J Agron Crop Sci 169:184–192

    CAS  Google Scholar 

  • Kochhar M, Blum U, Reinert RA (1980) Effects of O3 and (or) fescue on ladino clover: interactions. Can J Bot 58:241–249

    CAS  Google Scholar 

  • Koeppe DE, Rohrbaugh LM, Rice EL, Wender SH (1969) The effects of varying U.V. intensities on the concentration of scopolin and caffeoylquinic acids in tobacco and sunflower. Phytochemistry 8:889–896

    CAS  Google Scholar 

  • Koeppe DE, Rohrbaugh LM, Rice EL, Wender SH (1970) Tissue age and caffeoylquinic acid concentration in sunflower. Phytochemistry 9:297–301

    CAS  Google Scholar 

  • Kosslak RM, Bohlool BB (1984) Suppression of nodule development on one side of a split-root system of soybeans caused by prior inoculation of the other side. Plant Physiol 75:125–130

    CAS  Google Scholar 

  • Kotilainen T, Tegelberg R, Julkunen-Tiitto R, Lindfors A, O’Hara RB, Aphalo PJ (2010) Seasonal fluctuations in leaf phenolic composition under UV manipulations reflects contrasting strategies of alder and birch trees. Physiol Plant 140:297–309

    CAS  Google Scholar 

  • Kozlowski TT, Pallardy SG (2002) Acclimation and adaptive response of woody plants to environmental stress. Bot Rev 68:270–334

    Google Scholar 

  • Kumar V, Brainard DC, Bellinder RR (2009) Suppression of powell amaranth (Amaranthus powellii) by buckwheat residues: roles of allelopathy. Weed Sci 57:66–73

    CAS  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (1998) Plant physiological ecology. Springer, New York

    Google Scholar 

  • Lavelle P, Spain AV (2001) Soil ecology. Kluwer Academic Pub, Dordrecht

    Google Scholar 

  • Leão PN, Vasconcelos LMTSD, Vasconcelos VM (2009) Allelopathy in freshwater cynanobacteria. Crit Rev Microbiol 35:271–282

    Google Scholar 

  • Leather GR (1983a) Sunflowers (Helianthus annuus) are allelopathic to weeds. Weed Sci 31:37–42

    Google Scholar 

  • Leather GR (1983b) Weed control using allelopathic crop plants. J Chem Ecol 9:983–989

    CAS  Google Scholar 

  • Lehman ME (1993) Effects of allelopathy on plant emergence and growth as modified by physical factors and root distribution. North Carolina State University Thesis, Raleigh

    Google Scholar 

  • Lehman ME, Blum U (1997) Cover crop debris effects on weed emergence as modified by environmental factors. Allelopathy J 4:69–88

    Google Scholar 

  • Lehman ME, Blum U, Gerig TM (1994) Simultaneous effects of ferulic and p-coumaric acids on cucumber leaf expansion in split-root experiments. J Chem Ecol 20:1773–1782

    CAS  Google Scholar 

  • Levitt J (1972) Responses of plants to environmental stresses. Academic Press, New York

    Google Scholar 

  • Liebl RA, Worsham AD (1983) Inhibition of pitted morning glory (Ipomoea lacunosa L.) and certain other weed species by phytotoxic components of wheat (Triticum aestivum L.) straw. J Chem Ecol 9:1027–1043

    CAS  Google Scholar 

  • Long WG, Sweet DV, Tukey HB (1956) Loss of nutrients from plant foliage by leaching as indicated by radioisotopes. Science 123:1039–1040

    CAS  Google Scholar 

  • Lupwayi NZ, Clayton GW, Donovan JT, Harker KN, Turkington TK, Soon YK (2006) Nitrogen release during decomposition of crop residues under conventional and zero tillage. Can J Soil Sci 86:11–19

    CAS  Google Scholar 

  • Lynch J, Epstein A, Läuchli A, Weigt GI (1990) An automated greenhouse sand bioassay system suitable for studies of P nutrition. Plant Cell Environ 13:547–554

    CAS  Google Scholar 

  • Lyu S-W, Blum U (1990) Effects of ferulic acid, an allelopathic compound, on net P, K, and water uptake by cucumber seedlings in a split-root system. J Chem Ecol 16:2429–2439

    CAS  Google Scholar 

  • Macías FA, Molinillo JMG, Valera RM, Galindo JCG (2007) Allelopathy—a natural alternative for weed control. Pest Manag Sci 63:327–348

    Google Scholar 

  • Marshall DL, Abrahamson NJ, Avritt JJ, Hall PM, Medeiros JS, Reynolds J, Shaner GM, Simpson HL, Trafton AN, Tyler AP, Walsh S (2005) Differences in plastic responses to defoliation due to variation in the timing of treatments for two species of Sesbania (Fabaceae). Ann Bot 95:1049–1058

    Google Scholar 

  • Martin P, Rademacher B (1960) Studies on the mutual influences of weeds and crops. In: Harper JL (ed) The biology of weeds. A symposium of the British Ecological Society, Oxford. Blackwell, Oxford, pp 143–152

    Google Scholar 

  • Martin JJ, Weidenhamer JD (1995) Potassium deficiency increases thiopene production in Tagetes erecta L. In: Gustine DL, Flores HE (eds) Phytochemicals and health. Current topics in plant physiology, an American Society of Plant Physiologists Series, vol 15, pp 277–279

    Google Scholar 

  • Medeiros CAB, Clark RB, Ellis JR (1993) Effects of MES [2(N-morpholino)-ethanesulfonic acid] and pH on mineral nutrient uptake by mycorrhizal and nonmycorrhizal maize. J Plant Nutr 16:2255–2272

    CAS  Google Scholar 

  • Mohney BK, Matz T, LaMoreaux J, Wilcox DS, Gimsing AL, Mayer P, Weidenhamer JD (2009) In situ silicone tube microextraction: a new method for undisturbed sampling of root-exuded thiophenes from marigold (Tagetes erecta L) in soil. J Chem Ecol 35:1279–1287

    CAS  Google Scholar 

  • Moody SF, Clarke AE, Bacic A (1988) Structural analysis of secreted slime from wheat and cowpea roots. Phytochemistry 27:2857–1861

    CAS  Google Scholar 

  • Moonen AC, Bàrberi P (2006) An ecological approach to study the physical and chemical effects of rye cover crop residues on Amaranthus retroflexus, Echinochloa crus-galli and maize. Ann Appl Biol 148:73–89

    CAS  Google Scholar 

  • Mortimer PE, Pérez-Fernández MA, Valentine AJ (2008) The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of tripartite symbiosis with nodulated Phaseolus vulgaris. Soil Biol Biochem 40:1019–1027

    CAS  Google Scholar 

  • Mosse B, Thompson JP (1984) Vesicular-arbuscular endomycorrhizal inoculum production I. Exploratory experiments with beans (Phaseolus vulgaris) in nutrient flow bioassay. Can J Bot 62:1523–1530

    CAS  Google Scholar 

  • Muscolo A, Sidari M (2006) Seasonal fluctuations in soil phenolics of a coniferous forest: effects on seed germination of different coniferous species. Plant Soil 284:305–318

    CAS  Google Scholar 

  • Nakano H, Morita S, Shigemori H, Hasegawa K (2006) Plant growth inhibitory compounds from aqueous leachate of wheat straw. Plant Growth Regul 48:215–219

    CAS  Google Scholar 

  • Narasimhan K, Basheer C, Bajic VB, Swarup S (2003) Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 132:146–153

    CAS  Google Scholar 

  • Neary AJ, Tomassini F (1985) Preparation of alundum/ceramic plate tension lysimeters for soil water collection. Can J Soil Sci 65:169–177

    CAS  Google Scholar 

  • Neumann G, Römheld V (2007) The release of root exudates as affected by the plant physiological status. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface, 2nd edn. CRC Press, Boca Raton, pp 23–72

    Google Scholar 

  • Newman EJ, Miller MH (1977) Allelopathy among some British grassland species II: influence of root exudates on phosphorus uptake. J Ecol 65:399–411

    CAS  Google Scholar 

  • Newmann G, George TS, Plassard C (2009) Strategies and methods for studying the rhizosphere—the plant science toolbox. Plant Soil 321:431–456

    Google Scholar 

  • Nilsen ET, Walker JF, Miller OK, Semones SW, Lei TT, Clinton BD (1999) Inhibition of seedling survival under Rhododendron maximum (Ericaceae): Could allelopathy be a cause? Am J Bot 86:1597–1605

    CAS  Google Scholar 

  • Ohno T, Doolan K, Zibilske LM, Liebman M, Gallandt ER, Berube C (2000) Phytotoxic effects of red clover amended soils on wild mustard seedling growth. Agric Ecosyst Environ 78:187–192

    Google Scholar 

  • Pandey DK (1994) Inhibition of Salvinia (Salvinia molesta Mitchell) by parthenium (Parthenium hysterophorus L.) II: relative effect of flower, leaf, stem, and root residue on salvinia and paddy. J Chem Ecol 20:3123–3131

    CAS  Google Scholar 

  • Pang J, Tibbett M, Denton MD, Lambers H, Siddique KHM, Ryan MH (2011) Soil phosphorus supply affects nodulation and N:P ratio in 11 perennial legume seedlings. Crop Pasture Sci 62:992–1001

    CAS  Google Scholar 

  • Patrick ZA (1971) Phytotoxic substances associated with the decomposition in soil of plant residues. Soil Sci 111:13–18

    CAS  Google Scholar 

  • Pedrol N, González L, Reigosa MJ (2006) Allelopathy and abiotic stresses. In: Reigosa MJ, Pedrol N, González L (eds) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht, pp 171–209

    Google Scholar 

  • Percy K (1986) The effects of simulated acid rain on germinative capacity, growth and morphology of forest tree seedlings. New Phytol 104:473–484

    CAS  Google Scholar 

  • Pérez FJ, Ormeňo-Nuňez J (1991) Root exudates of wild oats: allelopathic effect on spring wheat. Phytochemistry 30:2199–2202

    Google Scholar 

  • Pramanik MHR, Nagai M, Asao T, Matsui Y (2000) Effects of temperature and photoperiod on phytotoxic root exudates of cucumber (Cucumis sativus) in hydroponic bioassay. J Chem Ecol 26:1953–1967

    CAS  Google Scholar 

  • Přikryl Z, Vančura V (1980) Root exudates of plants VI: wheat root exudation as dependent on growth, concentration gradient of exudates and the presence of bacteria. Plant Soil 57:69–83

    Google Scholar 

  • Pue KJ, Blum U, Gerig TM, Shafer SR (1995) Mechanism by which noninhibitory concentrations of glucose increase inhibitory activity of p-coumaric acid on morning-glory seedling biomass accumulation. J Chem Ecol 21:833–847

    CAS  Google Scholar 

  • Putnam AR, DeFrank J, Barnes JP (1983) Exploitation of allelopathy for weed control in annual and perennial cropping systems. J Chem Ecol 9:1001–1010

    CAS  Google Scholar 

  • Quayyum HA, Mallik AU, Leach DM, Gottardo C (2000) Growth inhibitory effects of nutgrass (Cyperus rotundus) on rice (Oryza sativa) seedlings. J Chem Ecol 26:2221–2231

    CAS  Google Scholar 

  • Rice EL (1984) Allelopathy. Academic Press, London

    Google Scholar 

  • Rice EL (1986) Allelopathic growth stimulation. In: Putnam AR, Tang C-S (eds) The science of allelopathy. Wiley, New York, pp 23–42

    Google Scholar 

  • Rovira AD (1969) Plant root exudates. Bot Rev 35:35–57

    CAS  Google Scholar 

  • Rovira AD, Foster RC, Martin JK (1979) Note on terminology: origin, nature and nomenclature of the organic materials in the rhizosphere. In: Harley JL, Russell RS (eds) The soil-root interface. Academic Press, London, pp 1–4

    Google Scholar 

  • Sampietro DA, Catalan CAN, Vattuone MA (2009) Isolation, identification and characterization of allelochemical/natural products. Science Publishers, Enfield

    Google Scholar 

  • Schenk NC (1982) Methods and principles of mycorrhizal research. American Phytophathological Society, St Paul

    Google Scholar 

  • Scherbatskoy T, Klein RM (1983) Response of spruce and birch foliage to leaching by acid mists. J Environ Qual 12:189–195

    CAS  Google Scholar 

  • Schmidt EL (1991) Methods for microbial autecology in the soil rhizosphere. In: Keister DL, Cregan PB (eds) Beltsville symposium in agricultural research, vol 14. The rhizosphere and plant growth. Kluwer Academic Press, Dordrecht, pp 81–89

    Google Scholar 

  • Schmidt SK, Ley RE (1999) Microbial competition and soil structure limit the expression of allelopathy. In: Inderjit, Dakshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, pp 339–351

    Google Scholar 

  • Schomberg HH, Steiner JL (1999) Nutrient dynamics of crop residues decomposing on a fallow no-till soil surface. Soil Sci Soc Am J 63:607–613

    CAS  Google Scholar 

  • Shafer SR (1988) Influence of ozone and simulated acid rain on microorganisms in the rhizosphere of Sorghum. Environ Pollut 51:137–152

    Google Scholar 

  • Shafer SR (1992) Responses of microbial populations in the rhizosphere to deposition of simulated acid rain onto foliage and/or soil. Environ Pollut 76:267–278

    CAS  Google Scholar 

  • Shafer SR, Blum U (1991) Influence of phenolic acids on microbial populations in the rhizosphere of cucumber. J Chem Ecol 17:369–389

    CAS  Google Scholar 

  • Shafer SR, Grand LF, Bruck RI, Heagle AS (1985) Formation of ectomycorrhizae on Pinus taeda seedlings exposed to simulated rain. Can J For Res 15:66–71

    Google Scholar 

  • Shay FJ, Hale MG (1973) Effects of low levels of calcium an exudation of sugars and sugar derivatives from intact peanut roots under axenic conditions. Plant Physiol 51:1061–1063

    CAS  Google Scholar 

  • Shukla A, Kumar A, Jha A, Ajit, Rao DVKN (2012) Phosphorus threshold for arbuscular mycorrhizal colonization of crops and tree seedlings. Biol Fertil Soils 48:109–116

    Google Scholar 

  • Sinkkonen A (2001) Density-dependent chemical interference—an extension of the biological response model. J Chem Ecol 27:1513–1523

    CAS  Google Scholar 

  • Sinkkonen A (2003) A model describing chemical interference caused by decomposing residues at different densities of growing plants. Plant Soil 250:315–322

    CAS  Google Scholar 

  • Sinkkonen A (2007) Modeling the effects of autotoxicity on density-dependent phytotoxicity. J Theor Biol 244:218–227

    CAS  Google Scholar 

  • Siqueira JO, Nair MG, Hammerschmidt R, Safir GR (1991) Significance of phenolic compounds in plant-soil-microbial systems. Crit Rev Plant Sci 10:63–121

    CAS  Google Scholar 

  • Smith WH (1970) Technique for collection of root exudates from mature trees. Plant Soil 32:238–241

    Google Scholar 

  • Smith WH (1976) Character and significance of forest tree root exudates. Ecology 57:324–331

    CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (2012) Biometry: the principles and practices of biological research. WH Freeman, New York

    Google Scholar 

  • Solar A, Colarič M, Usenik V, Stampar F (2006) Seasonal variation of selected flavonoids, phenolic acids and quinones in annual shoots of common walnut (Juglans regia L). Plant Sci 170:453–461

    CAS  Google Scholar 

  • Sparling GP, Vaughan D (1981) Soil phenolic acids and microbes in relation to plant growth. J Sci Food Agric 32:625–626

    Google Scholar 

  • Staman K, Blum U, Louws F, Robertson D (2001) Can simultaneous inhibition of seedling growth and stimulation of rhizosphere bacterial populations provide evidence for phytotoxin transfer from plant residues in the bulk soil to the rhizosphere of sensitive species? J Chem Ecol 27:807–829

    CAS  Google Scholar 

  • Steel RGD, Torrie JH (1997) Principles and procedures of statistics: a biometrical approach, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Summer LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in their functional genomics era. Phytochemistry 62:817–836

    Google Scholar 

  • Tang C-S (1986) Continuous trapping techniques for the study of allelochemicals from higher plants. In: Putnam AR, Tang C-S (eds) The science of allelopathy. Wiley, New York, pp 113–131

    Google Scholar 

  • Tang C-S, Young C-C (1982) Collection and identification of allelopathic compounds from the undisturbed root system of bigalta limpograss (Hemarthria altissima). Plant Physiol 69:155–160

    CAS  Google Scholar 

  • Tang C-S, Komai K, Huang RS (1989) Allelopathy and the chemistry of the rhizosphere. In: Chou CH, Waller GR (eds) Phytochemical ecology: allelochemicals, mycotoxins, and insect pheromones and allomones, Monograph Series. Institute of Botany, Academia Sinica, vol 9. Taipei, pp 217–226

    Google Scholar 

  • Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD (2007) Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol 61:295–304

    CAS  Google Scholar 

  • Tukey HB Jr (1966) Leaching of metabolites from above-ground plant parts and its implications. Bull Torrey Bot Club 93:385–401

    CAS  Google Scholar 

  • Tukey HB Jr, Mecklenburg RA (1964) Leaching of metabolites from foliage and subsequent reabsorption and redistribution of the leachate in plants. Am J Bot 51:737–742

    CAS  Google Scholar 

  • Tukey HB Jr, Wittwer SH, Tukey HB (1957) Leaching of carbohydrates from plant foliage as related to light intensity. Science 126:120–121

    CAS  Google Scholar 

  • Vaughan D, Malcolm RE (1985) Soil organic matter and biological activity. Martinus Nijhoff/Dr W Junk Publishers, Dordrecht

    Google Scholar 

  • Vaughan D, Sparling GP, Ord BG (1983) Amelioration of the phytotoxicity of phenolic acids by some soil microbes. Soil Biol Biochem 15:613–614

    CAS  Google Scholar 

  • Vázquez M, Barea J, Azcón R (2001) Impact of soil nitrogen concentration on Glomus spp.-Sinorhizobium interactions as affecting growth, nitrate reductase activity and protein content of Medicago sativa. Biol Fertil Soil 34:57–63

    Google Scholar 

  • Ventura M, Scandellari F, Bonora E, Tagliavini M (2010) Nutrient release during decomposition of leaf litter in a peach (Prunus persica L.) orchard. Nutr Cycl Agroecosyst 87:115–125

    Google Scholar 

  • Waller GR, Feng M-C, Fujii Y (1999) Biochemical analysis of allelopathic compounds: plants, microorganisms, and soil secondary metabolites. In: Inderjit, Daskshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, pp 75–98

    Google Scholar 

  • Wardle DA, Nicholson KS, Ahmed M (1992) Comparison of osmotic and allelopathic effects of grass leaf extracts on grass seed germination and radicle elongation. Plant Soil 140:315–319

    Google Scholar 

  • Waters ER, Blum U (1987) The effects of single and multiple exposures of ferulic acid on the vegetative and reproductive growth of Phaseolus vulgaris BBL-290. Am J Bot 74:1635–1645

    CAS  Google Scholar 

  • Weidenhamer JD, Morton TC, Romeo JT (1987) Solution volume and seed number: often overlooked factors in allelopathic bioassays. J Chem Ecol 13:1481–1491

    CAS  Google Scholar 

  • Weidenhamer JD, Hartnett DC, Romeo JT (1989) Density-dependent phytotoxicity: distinguishing resource competition and allelopathic interference in plants. J Appl Ecol 26:613–624

    CAS  Google Scholar 

  • Weidenhamer JD, Boes PD, Wilcox DS (2009) Solid-phase root zone extraction (SPRE): a new methodology for measurement of allelochemical dynamics in soil. Plant Soil 322:177–186

    CAS  Google Scholar 

  • Weston LA, Harmon R, Mueller S (1989) Allelophatic potential of sorghum-sudangrass hybrid (Sudex). J Chem Ecol 15:1855–1865

    CAS  Google Scholar 

  • Whitehead DC (1964) Identification of p-hydroxybenzoic, vanillic, p-coumaric and ferulic acids in soils. Nature 202:417–418

    CAS  Google Scholar 

  • Whitehead DC, Dibb H, Hartley RD (1981) Extractant pH and the release of phenolic compounds from soils, plant roots and leaf litter. Soil Biol Biochem 13:343–348

    CAS  Google Scholar 

  • Whitehead DC, Dibb H, Hartley RD (1982) Phenolic compounds in soil as influenced by the growth of different plant species. J App Ecol 19:579–588

    CAS  Google Scholar 

  • Wilson RE, Rice EL (1968) Allelopathy as expressed by Helinathus annuus and its role in old-field succession. Bull Torrey Bot Club 95:432–448

    CAS  Google Scholar 

  • Witzell J, Gref R, Näsholm T (2003) Plant-part specific and temporal variation in phenolic compounds of boreal bilberry (Vaccinium myrtillus) plants. Biochem Syst Ecol 31:115–127

    CAS  Google Scholar 

  • Wu H, Pratley J, Lemerle D, Haig T (2000a) Laboratory screening of allelopathic potential of wheat (Triticum aestivum) accessions against annual ryegrass (Lolium rigidum). Aust J Agric Res 51:259–266

    Google Scholar 

  • Wu H, Pratley J, Lemerle D, Haig T (2000b) Evaluation of seedling allelopathy in 453 wheat (Triticum aestivum) accessions against annual ryegrass (Lolium rigidum) by the equal-compartment-agar method. Aust J Agric Res 51:937–944

    Google Scholar 

  • Wu H, Haig T, Pratley J, Lemerle D, An M (2001a) Allelochemicals in wheat (Triticum aestivum L): cultivar differences in the exudation of phenolic acids. J Agric Food Chem 49:3742–3745

    CAS  Google Scholar 

  • Wu H, Pratley J, Lemerle D, Haig T, An M (2001b) Screening methods for evaluation of crop allelopathic potential. Bot Rev 67:403–415

    Google Scholar 

  • Wu H, Pratley J, Lemerle D, An M, Lui DL (2007) Autotoxicity of wheat (Triticum aestivum L.) as determined by laboratory bioassays. Plant Soil 296:85–93

    CAS  Google Scholar 

  • Yang L, Wang P, Kong C (2010) Effects of larch (Larix gmelini Rupr.) root exudates on Manchurian walnut (Juglans mandshurica Maxim.) growth and soil juglone in a mixed-species plantation. Plant Soil 329:249–258

    CAS  Google Scholar 

  • Yenish JP, Worsham AD, Chilton WS (1995) Disappearance of DIBOA-glucoside, DIBOA, and BOA from rye (Secale cereale L.) cover crop residue. Weed Sci 43:18–20

    CAS  Google Scholar 

  • Yu Z, Dahlgren RA (2000) Evaluation of methods for measuring polyphenols in conifer foliage. J Chem Ecol 26:2119–2140

    CAS  Google Scholar 

  • Yu JQ, Matsui Y (1994) Phytotoxic substances in root exudates of cucumber (Cucumis sativus L.). J Chem Ecol 20:21–31

    CAS  Google Scholar 

  • Yu JQ, Matsui Y (1997) Effects of root exudates of cucumber (Cucumis sativus) and allelochemicals on ion uptake by cucumber seedlings. J Chem Ecol 23:817–827

    CAS  Google Scholar 

  • Zabowski D, Ugolini FC (1990) Lysimeter and centrifuge soil solutions: seasonal difference between methods. Soil Sci Soc Am J 54:1130–1135

    CAS  Google Scholar 

  • Zhang Z-Y, Pan L-P, Li H-H (2009) Isolation, identification and characterization of soil microbes which degrade phenolic allelochemicals. J Appl Microbiol 108:1839–1849

    Google Scholar 

  • Zhang Y, Gu M, Shi K, Zhou YH, Yu JQ (2010) Effects of aqueous root extracts and hydrophobic root exudates of cucumber (Cucumis sativus L) on nuclei DNA content and expression of cell cycle-related genes in cucumber radicles. Plant Soil 327:455–463

    CAS  Google Scholar 

  • Zhao D, Oosterhuis DM (1999) Dynamics of mineral nutrient element concentrations in developing cotton leaves, bracts, and floral buds in relation to position in the canopy. J Plant Nut 22:1107–1122

    CAS  Google Scholar 

  • Zhu L-H, Wu X-Q, Qu H-Y, Ji J, Ye J (2010) Micropropagation of Pinus massoniana and mycorrhiza formation in vitro. Plant Cell Tiss Organ Cult 102:121–128

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo Blum .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Blum, U. (2014). Introduction to the Fundamentals of Laboratory Bioassays. In: Plant-Plant Allelopathic Interactions II. Springer, Cham. https://doi.org/10.1007/978-3-319-04732-4_2

Download citation

Publish with us

Policies and ethics