Almost Periodic Solutions of Navier–Stokes–Ohm Type Equations in Magneto-Hydrodynamics

  • Evagelia S. Athanasiadou
  • Vasileios F. Dionysatos
  • Panagiotis N. KoumantosEmail author
  • Panaiotis K. Pavlakos
Part of the Springer Optimization and Its Applications book series (SOIA, volume 91)


In this paper we construct (Bohl-Bohr- and Stepanoff-) almost periodic solutions of an evolution equation of the form \(\left ( \frac{d} {dt} + A\right )x(t) = F(t,x(t))\), \(t \in \mathbb{R}\), describing the velocity and the magnetic field of a viscous incompressible homogeneous ideal plasma in magneto-hydrodynamics. By − A it is denoted the infinitesimal generator of a C o-semigroup \({e}^{-tA}\), \(t \in {\mathbb{R}}^{+}\) of operators acting on an ordered Hilbert space E and \(F: \mathbb{R} \times E \rightarrow E\) is a given function. We also examine the case of the construction of positive almost periodic solutions.


Evolution equation Analytic semigroups Strong and classical solutions Ordered Banach spaces Magneto-hydrodynamics 

Mathematics Subject Classification (2010):

34K30 35R10 47H07 


  1. 1.
    AMANN, H. & QUITTNER, P., Semilinear parabolic equations involving measures and low regularity data, Trans. Amer. Math. Soc., 356 (3) (2003), 1045–1119.CrossRefMathSciNetGoogle Scholar
  2. 2.
    ATHANASIADOU E. S., DIONYSATOS V. F., KOUMANTOS P. N. & PAVLAKOS P. K., A semigroup approach to functional evolution equations, Mathematical Methods in the Applied Sciences (MMA), 37 (2) (2014), 217–222.Google Scholar
  3. 3.
    BOGDANOWICZ, W. M. & WELCH, J. N., On a linear operator connected with almost periodic solutions of linear differential equations in Banach spaces, Math. Ann., 172 (1967), 327–355.CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    CARATHÉODORY, C., Untersuchungen über die Grundlagen der Thermodynamik, Math. Ann., 67 (1909), 355–386.CrossRefMathSciNetGoogle Scholar
  5. 5.
    CHANDRASEKHAR, S., Hydrodynamic and Hydromagnetic Stability. Dover Publications, Inc., New York, (1981).Google Scholar
  6. 6.
    COWLING, T. G., Magnetohydrodynamic. New York: Interscience Publishers, 1957.Google Scholar
  7. 7.
    DALETSKIĬ Y. L. & KREĬN, M. G., Stability of Solutions of Differential Equations in Banach Spaces, Translations of Mathematical Monographs, 43, Amer. Math. Soc. Providence, Rhode Island, 1974.Google Scholar
  8. 8.
    DUVAUT, G., N. & LIONS, J. L., Inéquations en Thermoélastcité et Magnétohydrodynamique, Arch. Rational Mech. Anal., 46 (1972), 241–279.Google Scholar
  9. 9.
    EBIN, D. G. & MARSDEN, J., Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math., 92 (1970), 102–163.CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    FARWIG, R., KOZONO, H., & SOHR, H., An L q-approach to Stokes and Navier-Stokes equations in general domains, Acta Math., 195 (2005), 21–53.CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    FÖRSTE, J., Über die Grundgleichungen der Plasmadynamik auf der Basis der Zweiflüssigkeitstheorie, Z. Angew. Math. Mech., 59 (1979), 553–558.CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    GIGA, Y. & YOSHIDA, Z., On the Ohm-Navier-Stokes system in MHD, J. Mathematical Phys., 24 (12) (1983), 2860–2864.CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    − On the equations of the two-component theory in magnetohydrodynamics, Comm. Partial Differential Equations, 9 (1984), 503–522.Google Scholar
  14. 14.
    KANTOROVICH, L. V., VULIKH, B. Z. & PINSKER, A. G., Functional analysis in partially ordered spaces. Gostekhizdat, 1950 (Russian).Google Scholar
  15. 15.
    LADYZHENSKAYA, O.A., & V. A. SOLONNIKOV, The solution of certain magnetohydrodynamics problems for an incompressible viscous liquid, Tr. Math. Inst. Akad. Nauk. SSSR, 59 (1969), 115–187.Google Scholar
  16. 16.
    LASSNER, G., Über ein Rand-Anfangswertproblem der Magnetohydradynamik, Arch. Rational Mech. Anal.., 25 (1967), 388–405.Google Scholar
  17. 17.
    LEVITAN, B. M. & ZHIKOV, Almost Periodic Functions and Differential Equations. Cambridge Univ. Press, Cambridge, 1982.Google Scholar
  18. 18.
    MASSERA, J. L., & SCHÄFFER, J. J., Linear differential equations and functional analysis, I. Ann. of Math., 67 (3) (1958), 517–573.CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    MOFFATT, Magnetic field generation in electrically conducting fluids. Cambridge University Press, New York, (1978).Google Scholar
  20. 20.
    NOLL, W., Lectures on the foundations of Continuum Mechanics and Thermodynamics, Arch. Rational Mech. Anal., 52 (1973), 62–92.CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    PAVLAKOS, P. K., On integration in partially ordered groups, Canad. J. Math., 35 (2) (1983), 353–372.CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    PIKELNER, S.B., Grundlagen der kosmischen Elektrodynamik (Russ). Moskau (1966).Google Scholar
  23. 23.
    RANKIN, S. M., Semilinear evolution equations in Banach spaces with applications to parabolic partial differential equations, Trans. Amer. Math. Soc., 336 (2) (1993), 523–535.CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    REED, M. & SIMON, B., Methods of Modern Mathematical Physics. Vol II, Fourier analysis, selfadjointness, Academic Press, New York, 1975.Google Scholar
  25. 25.
    REED, M. & SIMON, B., Methods of Modern Mathematical Physics. Vol IV, Analysis of operators, Academic Press, New York, 1978.zbMATHGoogle Scholar
  26. 26.
    SCHLÜTER, A., Dynamik des Plasma, I und II., Z. Naturforsch. 5a, 72–78, (1950), 6a,, 73–79 (1951).Google Scholar
  27. 27.
    SCHONBECK, M. E., SCHONBECK, T. P., Süli, E., Large-time behavior of solutions to the magneto-hydrodynamic equations, Math. Ann., 304 (1996), 717–756.CrossRefMathSciNetGoogle Scholar
  28. 28.
    SEGAL, I., Non-linear semigroups, Ann. of Math., 78 (1963), 339–364.CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    STRÖHMER, G., About an initial-boundary value problem from magneto-hydrodynamics, Math. Z., 209 (1992), 345–362.CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    − An existence result for partially regular weak solutions of certain abstract evolution equations, with an application to magneto-hydrodynamics, Math. Z., 213 (1993), 373–385.Google Scholar
  31. 31.
    TAYLOR, M. E., Partial Differential Equations I, II, III. Vols 115, 116, 117. Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1996.Google Scholar
  32. 32.
    YOSIDA, K., Functional Analysis. (6th edition) Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1980.CrossRefzbMATHGoogle Scholar
  33. 33.
    ZAIDMAN, S. D., Some asymptotic theorems for abstract differential equations, Proc. Amer. Math. Soc., 25 (1970), 521–525.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Evagelia S. Athanasiadou
    • 1
  • Vasileios F. Dionysatos
    • 1
  • Panagiotis N. Koumantos
    • 1
    • 2
    Email author
  • Panaiotis K. Pavlakos
    • 1
  1. 1.Mathematics DepartmentNational and Kapodistrian University of AthensAthensGreece
  2. 2.Physics DepartmentNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations