Computational Number Theory and Cryptography

  • Preda Mihăilescu
  • Michael Th. RassiasEmail author
Part of the Springer Optimization and Its Applications book series (SOIA, volume 91)


This is a succinct survey of the development of cryptography with accent on the public key age. The paper is written for a general, technically interested reader. We also review some fundamental mathematical ideas of computational number theory that play an important role in present time cryptography.


Computational number theory Cryptography Elliptic curves over finite fields Diffie-Hellman algorithm 

2000 Mathematics Subject Classification:

11Y11 11G05 11Y16 11Y40 68Q17 68Q25 



We would like to express our thanks to Professor Joseph Silverman for his useful remarks on the manuscript.


  1. 1.
    R. Bărbulescu, P. Gaudry, A. Joux, É. Thomé, A quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic,
  2. 2.
    D. J. Bernstein, Tung Chou, Peter Schwabe, McBits: fast constant-time code-based cryptography, CHES 2013, to appear.Google Scholar
  3. 3.
    M. Bordewich, M. H. Freedman, L. Lovász and D. Welsh, Approximate counting and quantum computation, Combinatorics, Probability and Computing, 14(2005), 737–754.CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    A. Bostan, F. Morain, B. Salvy and É Schost: Fast algorithms for computing isogenies between elliptici curves, Math. Comp. 77 (2008), 1755–1778.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    E. R. Canfield, P. Erdős, C. Pomerance, On a problem of Oppenheim concerning Factorisatio Numerorum, J. Number Theory 17 (1983) 1–28.CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    R. Cramer and V. Shoup, Signature Schemes based on strong RSA assumptions, Extended abstract in Proc. ACM CCS 1999.Google Scholar
  7. 7.
    R. Crandall and C. Pomerance, Prime Numbers – A Computational Perspective, Springer, 2004.Google Scholar
  8. 8.
    Whitfield Diffie and Martin Hellman, New Directions in Cryptography, IEEE Transactions on Information Theory; Nov. 1976.Google Scholar
  9. 9.
    N. D. Elkies, Elliptic and modular curves over finite fields and related computational issues, Computational Perspectives on Number Theory: Proc. Conf. in honor of A. O. L. Atkin (D. A. Buell and J. T. Teitelbaum, eds.), AMS/International Press, 1998, 21–76.Google Scholar
  10. 10.
    Cryptanalysis of ENIGMA in Wikipedia:
  11. 11.
    M. H. Freedman, Complexity classes as mathematical axioms, Annals of Math., 170(2009), 995–1002.CrossRefzbMATHGoogle Scholar
  12. 12.
    M. H. Freedman, A. Kitaev and Z. Wang, Simulation of topological field theories by quantum computers, Commun. Math. Phys., 227(2002), 587–603.CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    M. H. Freedman, A. Kitaev, M. J. Larsen and Z. Wang, Topological quantum computation, Bull. Amer. Math. Soc., 40(2003), 31–38.CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    M. H. Freedman, M. J. Larsen and Z. Wang, Density representations of braid groups and distribution of values of Jones invariants, Commun. Math. Phys. 228(2002), 177–199.CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    M. H. Freedman, M. J. Larsen and Z. Wang, A modular functor which is universal for quantum computation, Commun. Math. Phys., 227(2002), 605–622.CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    F. Heß, A. Stein, S. Stein and M. Lochter, The Magic of Elliptic Curves and Public Key Cryptography, Jahresbericht Deutsch Math.-Ver. 114 (2012), 59–88.CrossRefzbMATHGoogle Scholar
  17. 17.
    J. Hoffstein, J. Pipher and J.H. Silverman: An Introduction to Mathematical Cryptography, Springer (2008)Google Scholar
  18. 18.
    A. Joux: A new index calculus algorithm with complexity \(L(1/4 + o(1))\) in very small characteristic,
  19. 19.
    D. Kahn: The Codebreakers: The Comprehensive History of Secret Communication from Ancient Times to the Internet, Scribner (1997).Google Scholar
  20. 20.
    N. Koblitz, Elliptic curve cryptosystems, Math. Comp., 48(1987), 203–209.CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    N. Koblitz, Course in Number Theory and Cryptography, Springer-Verlag, New York, 1994.CrossRefzbMATHGoogle Scholar
  22. 22.
    H. W. Lenstra, Factoring integers with elliptic curves, Annals Math., 126(3)(1987), 649–673.CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    U. Maurer: Towards the equivalence of breaking the Diffie-Hellman protocol and computing discrete logarithms. Advances in Cryptology - Crypto ’94, Springer-Verlag, (1994), 271–281.Google Scholar
  24. 24.
    R. J. McEliece (January and February 1978), A Public-Key Cryptosystem Based On Algebraic Coding Theory, DSN Progress Report. 42–44: 114. Bibcode:1978DSNPR..44..114M.Google Scholar
  25. 25.
    Mihăilescu, P., Morain, F., and Schost, E.: Computing the eigenvalue in the Schoof-Elkies-Atkin algorithm using Abelian lifts. In ISSAC ’07: Proceedings of the 2007 international symposium on Symbolic and algebraic computation (New York, NY, USA, 2007), ACM Press, pp. 285–292.Google Scholar
  26. 26.
    P. Mihăilescu and M. Th. Rassias, Public key cryptography, number theory and applications, Newsletter of the European Mathematical Society, 86(2012), 25–30.Google Scholar
  27. 27.
    P. Mihăilescu and V. Vuletescu, Elliptic Gauss sums and applications to point counting. J. Symb. Comput. 45, 8(2010), 825–836.Google Scholar
  28. 28.
    V. Miller, Uses of elliptic curves in cryptography, Advances in Cryptology: Proc. of Crypto ’85, Lecture Notes in Computer Science, 218(1986), Springer-Verlag, New York, pp. 417–426.Google Scholar
  29. 29.
    A. Myasnikov, V. Shpilrain and A. Ushakov, Group-based Cryptography, Advanced Courses in Math. CRM Barcelona, Birkhäuser Verlag (2008)Google Scholar
  30. 30.
    M. Th. Rassias, On the representation of the number of integral points of an elliptic curve modulo a prime number,
  31. 31.
    R. Rivest, A. Shamir and L. Adleman, A method for obtaining signatures and public key cryptography, Communications of the ACM, 21 (1978), 121–126.CrossRefMathSciNetGoogle Scholar
  32. 32.
    R. Schoof, Elliptic Curves over Finite Fields and Computation of Square Roots mod p, Math. Comp. 43(1985), 483–494.MathSciNetGoogle Scholar
  33. 33.
    R. Schoof, Counting Point on Elliptic Curves over Finite Fields, Journal de Th. des Nombres BordeauxGoogle Scholar
  34. 34.
    J. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics 106, Springer-Verlag, New York, 1986.Google Scholar
  35. 35.
    L. C. Washington, Elliptic Curves-Number Theory and Cryptography, CRC Press, London, New York, 2008.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Mathematisches Institut der Universität GöttingenGöttingenGermany
  2. 2.Department of MathematicsETH-ZürichZürichSwitzerland

Personalised recommendations