Advertisement

Balanced Integer Solutions of Linear Equations

  • Konstantinos A. DraziotisEmail author
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 91)

Abstract

We use lattice-based methods in order to get an integer solution of the linear equation \(a_{1}x_{1} + \cdots + a_{n}x_{n} = a_{0},\) which satisfies the bound constraints | x j | ≤ X j . Further we study the corresponding homogeneous linear equation under constraints and finally we apply our method to Knapsack problem.

Keywords

Linear diophantine equation Lattice LLL CVP 

2000 Mathematics Subject Classification:

Primary 11D04 Secondary 11Y50 

References

  1. 1.
    Aardal, Karen; Hurkens, Cor.; Lenstra, Arjen K.; Solving a linear Diophantine equation with lower and upper bounds on the variables. Integer programming and combinatorial optimization p.229–242, Lecture Notes in Comput. Sci., 1412, Springer, Berlin, 1998.Google Scholar
  2. 2.
    Bosma, Wieb, Cannon, John and Playoust, Catherine; The Magma algebra system. I. The user language, J. Symbolic Comput.Vol. 24 (1997).Google Scholar
  3. 3.
    Coppersmith, D.: Finding small solutions to small degree polynomials. Lecture Notes in Computer Science 2146 (2001) p.20–31.CrossRefMathSciNetGoogle Scholar
  4. 4.
    Coster J.M., Joux A., LaMacchia B.A., Odlyzko A.M., Schnorr C-P., and Stern J., Improved low-density subset sum algorithms. Computational Complexity, 2:111–128, 1992.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Gama N. and Nguyen P.Q., Predicting Lattice reduction, Eurocrypt 2008, LNCS 4965, p.31–51 (2008)MathSciNetGoogle Scholar
  6. 6.
    Garey, M.R.;Johnson, D.S.; Computers and intractability: A guide to the theory of NP-completeness. W.H.Freeman and Company, NY (1979).zbMATHGoogle Scholar
  7. 7.
    Galbraith, S.; Mathematics of Public Key Cryptography, Version 1.1, December 1, 2011, http://www.math.auckland.ac.nz/%98sgal018/crypto-book/crypto-book.html.
  8. 8.
    Hanrot G., Pujol X. and D.Stehle. Algorithms for the Shortest and Closest Lattice Vector Problems. IWCC’11.Google Scholar
  9. 9.
    Lagarias, J.C., Odlyzko, A.M.: Solving low-density subset sum problems. J. Assoc. Comput. Mach. 32(1) (1985) 229–246.CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Lenstra, H.W.; On the Chor-Rivest knapsack cryptosystem; Journal of Cryptology, Volume 3, Number 3 (1991), p.149–155.Google Scholar
  11. 11.
    Lueker, G.S; Two NP-complete problems in nonnegative integer programming, report 178 CSL, Princeton University (1975).Google Scholar
  12. 12.
    Merkle, R., Hellman, M.; Hiding information and Signatures in trapdoor cryptosystem, IEEE Trans.Inf.Theory IT-24(1978), p.525–530.Google Scholar
  13. 13.
    Nguyen, P.Q., Stern, J., The two faces of Lattices in Cryptography, Cryptography and lattices. 1st international conference, CaLC 2001, Providence, RI, USA, March 29–30, 2001. Revised papers. Berlin: Springer. Lect. Notes Comput. Sci. 2146, 146–180 (2001).Google Scholar
  14. 14.
    Pujol X., Stehle D., fplll mathematic software (version 4.0), http://xpujol.net/fplll.
  15. 15.
    Rosser, J. B.; A note on the linear Diophantine Equation, American Maths. Monthly 48(1941).Google Scholar
  16. 16.
    Stein, W.A. et al. Sage Mathematics Software (Version 4.5.1), The Sage Development Team, 2012, http://www.sagemath.org.
  17. 17.
    Vasilenko, O.N.; Number-Theoretic Algorithms in Cryptography, Translations of Mathematical Monographs (AMS), Volume 232,Translated by Alex Martsinkovsky.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of InformaticsAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations