On the Use of Anaphora Resolution for Workflow Extraction

  • Pol Schumacher
  • Mirjam Minor
  • Erik Schulte-Zurhausen
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 263)


In this chapter we present three anaphora resolution approaches for workflow extraction. We introduce a lexical approach and two further approaches based on a set of association rules which are created during a statistical analysis of a corpus of workflows. We implement these approaches in our generic workflow extraction framework. The workflow extraction framework allows to derive a formal representation based on workflows from textual descriptions of instructions, for instance, of aircraft repair procedures from a maintenance manual. The framework applies a pipes-and-filters architecture and uses Natural Language Processing (NLP) tools to perform information extraction steps automatically. We evaluate the anaphora resolution approaches in the cooking domain. Two different evaluation functions are used for the evaluation which compare the extraction result with a golden standard. The syntactic function is strictly limited to syntactical comparison. The semantic evaluation function can use an ontology to infer a semantic distance for the evaluation. The evaluation shows that the most advanced anaphora resolution approach performs best. In addition a comparison of the semantic and syntactic evaluation functions shows that the semantic evaluation function is better suited for the evaluation of the anaphora resolution approaches.


Workflow extraction Process oriented case-based reasoning Information extraction Anaphora resolution 



This work was funded by the German Research Foundation, project number BE 1373/3-1.


  1. 1.
    Workflow Management Coalition: Workflow management coalition glossary and terminology. (1999). Accessed 23 May 2007
  2. 2.
    Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological variations, and system approaches. AI commun. 7(1), 39–59 (1994)Google Scholar
  3. 3.
    Minor, M., Montani, S., Recio-Garca, J.A.: Process-oriented case-based reasoning. Inf. Syst. 40, 103–105 (2014)Google Scholar
  4. 4.
    Bergmann, R., Gil, Y.: Similarity assessment and efficient retrieval of semantic workflows. Inf. Syst. 40, 115–127 (2014)Google Scholar
  5. 5.
    Minor, M., Tartakovski, A., Schmalen, D., Bergmann, R.: Agile workflow technology and case-based change reuse for long-term processes. Int. J. Intell. Inf. Technol. 4(1), 80–98 (2008)CrossRefGoogle Scholar
  6. 6.
    Kendall-Morwick, J., Leake, D.: Facilitating representation and retrieval of structured cases: Principles and toolkit. Inf. Syst. 40, 106–114 (2014)Google Scholar
  7. 7.
    Minor, M., Bergmann, R., Görg, S.: Case-based adaptation of workflows. Inf. Syst. 40, 142–152 (2014)Google Scholar
  8. 8.
    Schumacher, P., Minor, M., Walter, K., Bergmann, R.: Extraction of procedural knowledge from the web. In: Proceedings of the Workshop WWW’12, Lyon, France (2012)Google Scholar
  9. 9.
    Dufour-Lussier, V., Le Ber, F., Lieber, J., Nauer, E.: Automatic case acquisition from texts for process-oriented case-based reasoning. Inf. Syst. 40, 153–167 (2014)Google Scholar
  10. 10.
    Schumacher, P., Minor, M., Schulte-Zurhausen, E.: Extracting and enriching workflows from text. In: Proceedings of the 2013 IEEE 14th International Conference on Information Reuse and Integration, pp. 285–292 (2013)Google Scholar
  11. 11.
    Zhu, H.: Software Design Methodology: From Principles to Architectural Styles. Butterworth-Heinemann (2005)Google Scholar
  12. 12.
    Langer, G.: Textkohärenz und Textspezifität. Europäische Hochschulschriften, vol. 152. Peter Lang, Ireland (1995)Google Scholar
  13. 13.
    AeroSpace and Defence Industries Association of Europe: ASD simplified technical English. (2013). Accessed 19 Sept 2013
  14. 14.
    Minor, M., Schmalen, D., Bergmann, R.: XML-based representation of agile workflows. In: Bichler, M., Hess, T., Krcmar, H., Lechner, U., Matthes, F., Picot, A., Speitkamp, B., Wolf, P. (eds.) Multikonferenz Wirtschaftsinformatik 2008, pp. 439–440. GITO-Verlag, Berlin (2008)Google Scholar
  15. 15.
    Riloff, E., Phillips, W.: An introduction to the sundance and autoslog systems. Technical report, Technical report UUCS-04-015, School of Computing, University of Utah, (2004)Google Scholar
  16. 16.
    Schank, R.: Conceptual dependence: A theory of natural language understanding. Cogn. Psychol. (3)4, 532–631 (1972)Google Scholar
  17. 17.
    Fillmore, C.: The case for case reopened. Syntax Semant 8(1977), 59–82 (1977)Google Scholar
  18. 18.
    Tognini-Bonelli, E.: Corpus Linguistics at Work. John Benjamins Publishing, Amsterdam (2001)Google Scholar
  19. 19.
    Higginbotham, J., Pianesi, F., Varzi, A.C.: Speaking of events. Oxford University Press, New York (2000)Google Scholar
  20. 20.
    Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the Eleventh International Conference on Data Engineering, pp. 3–14. IEEE Press, New York (1995)Google Scholar
  21. 21.
    Kowalski, G.: Information system evaluation. In: Information Retrieval Architecture and Algorithms, pp. 253–281. Springer, Berlin (2011)Google Scholar
  22. 22.
    Euzenat, J.: Semantic precision and recall for ontology alignment evaluation. In: Proceedings of the IJCAI, pp. 348–353 (2007)Google Scholar
  23. 23.
    Pedersen, T., Pakhomov, S.V., Patwardhan, S., Chute, C.G.: Measures of semantic similarity and relatedness in the biomedical domain. J. Biomed. Inform. 40(3), 288–299 (2007)CrossRefGoogle Scholar
  24. 24.
    Lin, D.: An information-theoretic definition of similarity. ICML 98, 296–304 (1998)Google Scholar
  25. 25.
    Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: Proceedings of the IJCAI, vol. 1, pp. 448–453. Morgan Kaufmann, San Francisco (1995)Google Scholar
  26. 26.
    Sánchez, D., Batet, M., Isern, D.: Ontology-based information content computation. Knowl. Based Syst. 24(2), 297–303 (2011)CrossRefGoogle Scholar
  27. 27.
    Gasperin, C., Briscoe, T.: Statistical anaphora resolution in biomedical texts. In: Proceedings of the 22nd International Conference on Computational Linguistics, vol. 1. COLING ’08, Stroudsburg, USA, Association for Computational Linguistics, pp. 257–264 (2008)Google Scholar
  28. 28.
    Markert, K., Modjeska, N., Nissim, M.: Using the web for nominal anaphora resolution. In: Proceedings of the EACL Workshop on the Computational Treatment of Anaphora, Budapest, pp. 39–46 (2003)Google Scholar
  29. 29.
    Gil, Y., Ratnakar, V., Fritz, C.: Tellme: learning procedures from tutorial instruction. In: Proceedings of the 15th International Conference on Intelligent User Interfaces, pp. 227–236 (2011)Google Scholar
  30. 30.
    Zhang, Z., Webster, P., Uren, V.S., Varga, A., Ciravegna, F.: Automatically extracting procedural knowledge from instructional texts using natural language processing. In: Calzolari, N., Choukri, K., Declerck, T., Dogan, M.U., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S. (eds.) LREC. European Language Resources Association (ELRA), Istanbul, pp. 520–527 (2012)Google Scholar
  31. 31.
    Friedrich, F., Mendling, J., Puhlmann, F.: Process model generation from natural language text. In: Rolland, C. (ed.) Advanced Information Systems Engineering, vol. 6741, pp. 482–496. Springer, Heidelberg (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Pol Schumacher
    • 1
  • Mirjam Minor
    • 1
  • Erik Schulte-Zurhausen
    • 1
  1. 1.Goethe Universität Frankfurt - Institut für Informatik - Lehrstuhl für WirtschaftsinformatikFrankfurt am MainGermany

Personalised recommendations