Formal Modeling and Analysis of Learning-Based Routing in Mobile Wireless Sensor Networks

  • Fatemeh Kazemeyni
  • Olaf Owe
  • Einar Broch Johnsen
  • Ilangko Balasingham
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 263)


Limited energy supply is a major concern when dealing with wireless sensor networks (WSNs). Therefore, routing protocols for WSNs should be designed to be energy efficient. This chapter considers a learning-based routing protocol for WSNs with mobile nodes, which is capable of handling both centralized and decentralized routing. A priori knowledge of the movement patterns of the nodes is exploited to select the best routing path, using a Bayesian learning algorithm. While simulation tools cannot generally prove that a protocol is correct, formal methods can explore all possible behaviors of network nodes to search for failures. We develop a formal model of the learning-based protocol and use the rewriting logic tool Maude to analyze both the correctness and efficiency of the model. Our experimental results show that the decentralized approach is twice as energy-efficient as the centralized scheme. It also outperforms the power-sensitive AODV (PS-AODV), an efficient but non-learning routing protocol. Our formal model of Bayesian learning integrates a real data-set which forces the model to conform to the real data. This technique seems useful beyond the case study of this chapter.


Wireless sensor networks Mobility Learning Routing Formal modeling and analysis Probabilistic modeling Rewriting logic Maude 


  1. 1.
    Dijkstra, E.W.: A note on two problems in connection with graphs. Numer. Math. 1, 269–271 (1959)Google Scholar
  2. 2.
    Mitchell, T.M.: Machine Learning (ISE Editions). McGraw-Hill, Boston (1997)Google Scholar
  3. 3.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Quesada, J.F.: Maude: specification and programming in rewriting logic. Theoret. Comput. Sci. 285, 187–243 (2002)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoret. Comput. Sci. 96, 73–155 (1992)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Kazemeyni, F., Owe, O., Johnsen, E.B., Balasingham, I.: Learning-based routing in mobilewireless sensor networks: applying formal modeling and analysis. In: Proceedings of IEEE 14th International Conference on Information Reuse and Integration—Workshop on Formal Methods Integration (FMi’13), pp. 1–8. IEEE (2013)Google Scholar
  6. 6.
    Olagbegi, B.S., Meghanathan, N.: A review of the energy efficient and secure multicast routing protocols for mobile ad hoc networks. CoRR, abs/1006.3366 (2010)Google Scholar
  7. 7.
    Liu, M., Cao, J., Chen, G., Wang, X.: An energy-aware routing protocol in wireless sensor networks. IEEE Sens. 9(1), 445–462 (2009)Google Scholar
  8. 8.
    Wang, J., Cho, J., Lee, S., Chen, K-C., Lee, Y-K.: Hop-based energy aware routing algorithm for wireless sensor networks. IEICE Trans. 93-B(2), 305–316 (2010)Google Scholar
  9. 9.
    Stojmenovic, I., Lin, X.: Power-aware localized routing in wireless networks. IEEE Trans. Parallel Distrib. Syst. 12(11), 1122–1133 (2001)Google Scholar
  10. 10.
    Uddin, M.Y.S., Ahmadi, H., Abdelzaher, T., Kravets, R.: A low-energy, multi-copy inter-contact routing protocol for disaster response networks. In: Proceedings of 6th Annual IEEE communications society conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON’09), pp. 637–645. IEEE Press (2009)Google Scholar
  11. 11.
    Arroyo-Valles, R., Alaiz-Rodriguez, R., Guerrero-Curieses, A., Cid-Sueiro, J.: Q-probabilistic routing in wireless sensor networks. In: Proceedings of 3rd International Conference on Intelligent Sensors, Sensor Networks and Information (ISSNIP’07), pp. 1–6 (2007)Google Scholar
  12. 12.
    Barrett, C.L., Eidenbenz, S.J., Kroc, L., Marathe, M., Smith, J.P.: Parametric probabilistic routing in sensor networks. Mob. Netw. Appl. J. 10, 529–544 (2005)CrossRefGoogle Scholar
  13. 13.
    Lindgren, A., Doria, A., Schelén, O.: Probabilistic routing in intermittently connected networks. ACM SIGMOBILE Mob. Comput. Commun. Rev. 7, 19–20 (2003)Google Scholar
  14. 14.
    Wang, P., Wang, T.: Adaptive routing for sensor networks using reinforcement learning. In: Proceedings of the Sixth International Conference on Computer and Information Technology (CIT ’06), pp. 219–219. IEEE Computer Society (2006)Google Scholar
  15. 15.
    Pandana, C., Liu, K.J.R.: Near-optimal reinforcement learning framework for energy-aware sensor communications. IEEE J. Sel. Areas Commun. 23, 209–232 (2002)Google Scholar
  16. 16.
    Coleri, S., Ergen, M., Koo, T.J.: Lifetime analysis of a sensor network with hybrid automata modelling. In: Proceedings of first ACM International Workshop on Wireless Sensor Networks and Applications (WSNA’02), pp. 98–104. ACM (2002)Google Scholar
  17. 17.
    Fehnker, A., van Hoesel, L., Mader, A.: Modelling and verification of the LMAC protocol for wireless sensor networks. In: Proceedings of the 6th International Conference on Integrated Formal Methods (IFM’07). Lecture Notes in Computer Science, vol. 4591, pp. 253–272. Springer (2007)Google Scholar
  18. 18.
    Tschirner, S., Xuedong, L., Yi, W.: Model-based validation of QoS properties of biomedical sensor networks. In: Proceedings of the 8th ACM & IEEE International conference on Embedded software (EMSOFT’08), pp. 69–78. ACM (2008)Google Scholar
  19. 19.
    Johnsen, E.B., Owe, O., Bjørk, J., Kyas, M.: An object-oriented component model for heterogeneous nets. In: Proceedings of the 6th International Symposium on Formal Methods for Components and Objects (FMCO 2007). Lecture Notes in Computer Science, vol. 5382, pp. 257–279. Springer (2008)Google Scholar
  20. 20.
    Ölveczky, P.C., Thorvaldsen, S.: Formal modeling, performance estimation, and model checking of wireless sensor network algorithms in real-time maude. Theoret. Comput. Sci. 410(2–3), 254–280 (2009)Google Scholar
  21. 21.
    Katelman, M., Meseguer, J., Hou, J.C.: Redesign of the LMST wireless sensor protocol through formal modeling and statistical model checking. In: Proceedings of the 10th International Conference on Formal Methods for Open Object-Based Distributed Systems (FMOODS’08). Lecture Notes in Computer Science, vol. 5051, pp. 150–169. Springer (2008)Google Scholar
  22. 22.
    Dong, J.S., Sun, J., Sun, J., Taguchi, K., Zhang, X.: Specifying and verifying sensor networks: an experiment of formal methods. In: 10th International Conference on Formal Engineering Methods (ICFEM’08), Lecture Notes in Computer Science, vol. 5256, pp. 318–337. Springer (2008)Google Scholar
  23. 23.
    Kulkarni, S.A., Rao, G.R.: Formal modeling of reinforcement learning algorithms applied for mobile ad hoc network. Int. J. Recent Trends Eng. (IJRTE) 2, 43–47 (2009)Google Scholar
  24. 24.
    Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J. Artificial Intell. Res. 4, 237–285 (1996)Google Scholar
  25. 25.
    Box, G.E.P., Tiao, G.C.: Bayesian Inference in Statistical Analysis (Wiley Classics Library). Wiley-Interscience, New York (1992)Google Scholar
  26. 26.
    Shakya, S., McCall, J., Brown, D.: Using a Markov network model in a univariate EDA: an empirical cost-benefit analysis. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, GECCO’05, pp. 727–734. ACM (2005)Google Scholar
  27. 27.
    Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)Google Scholar
  28. 28.
    Plotkin, G.D.: A structural approach to operational semantics. J. Logic and Algebraic Program. (JLAP) 60–61, 17–139 (2004)Google Scholar
  29. 29.
    Kalbfleisch, J.G.: Probability and Statistical Inference, Vol. 1: Probability (Springer Texts in Statistics). Springer, Secaucus (1985)Google Scholar
  30. 30.
    Agha, G., Meseguer, J., Sen, K.: PMaude: rewrite-based specification language for probabilistic object systems. Electron. Notes Theoret. Comput. Sci. 153(2), 213–239 (2006)Google Scholar
  31. 31.
    Kazemeyni, F., Owe, O., Johnsen, E.B., Balasingham, I.: Learning-based routing in mobile wireless sensor networks: formal modeling and analysis for WSNs. Technical Report ISBN 82-7368-390-7, Department of Informatics, University of Oslo (2013)Google Scholar
  32. 32.
    Scott, J., Gass, R., Crowcroft, J., Hui, P., Diot, C., Chaintreau, A.: CRAWDAD trace: cambridge/haggle/imote/intel (v. 2006–01-31). (2006)
  33. 33.
    Kazemeyni, F., Johnsen, E.B., Owe, O., Balasingham, I.: Formal modeling and validation of a power-efficient grouping protocol for WSNs. J. Logic Algebraic Program. (JLAP) 81(3), 284–297 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Fatemeh Kazemeyni
    • 1
    • 2
  • Olaf Owe
    • 1
  • Einar Broch Johnsen
    • 1
  • Ilangko Balasingham
    • 2
    • 3
  1. 1.Department of InformaticsUniversity of OsloOsloNorway
  2. 2.The Intervention CenterOslo University Hospitals, University of OsloOsloNorway
  3. 3.Department of Electronics and TelecommunicationNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations