University Knowledge Base: Two Years of Experience

  • Jakub Koperwas
  • Łukasz Skonieczny
  • Marek Kozłowski
  • Henryk Rybiński
  • Wacław Struk
Part of the Studies in Computational Intelligence book series (SCI, volume 541)


This chapter is devoted to the 2-years development and exploitation of the repository platform built at Warsaw University of Technology for the purpose of gathering University research knowledge. The platform has been developed under the SYNAT project, aimed at building nation-wide scientific information infrastructure. The implementation of the platform in the form of the advanced information system is discussed. New functionalities of the knowledge base are presented.


Digital library Knowledge base Scientific resources Repository 


  1. 1.
    Bembenik R., Skonieczny Ł., Rybiński H., Niezgódka M. (eds.): Intelligent Tools for Building a Scientific Information Platform, Studies in Computational Intelligence, vol. 390, 2012, Springer, ISBN 978-3-642-24808-5, p. 277 doi: 10.1007/978-3-642-24809-2
  2. 2.
    Koperwas J., Skonieczny Ł., Rybiński H., Struk W.: Development of a University Knowledge Base. In: Bembenik R. et al (eds.) Studies in Computational Intelligence. In: Intelligent Tools for Building a Scientific Information Platform: Advanced Architectures and Solutions, vol. 467, ISBN 978-3-642-35646-9, (2013), pp. 97–110, doi: 10.1007/978-3-642-35647-6_8
  3. 3.
    Adamczyk T., Andruszkiewicz P.: Web Resource Retrieval System for Building a Scientific Information Database. (2013)Google Scholar
  4. 4.
    Andruszkiewicz, P., Gambin, T., Kryszkiewicz, M., Kozlowski, M., Lieber, K., Matusiak, A., Miedzinski, E., Morzy, M., Nachyla, B., Omelczuk, A., Rybinski, H., Skonieczny, L.: Synat/passim-report 4, b11 stage. Technical report (2012)Google Scholar
  5. 5.
  6. 6.
    Ontology of Scientific Journal, Classification of Scientific Journals,
  7. 7.
    Gabrilovich E., Markovitch S.: Overcoming the brittleness bottleneck using Wikipedia: Enhancing text categorization with encyclopedic knowledge. In: AAAI (2006)Google Scholar
  8. 8.
    Gabrilovich E., Markovitch S., Wikipedia-based semantic interpretation for natural language processing. J. Artif. Intell. Res. 34, 443–498 (2009)Google Scholar
  9. 9.
    Medelyan O., Milne D., Legg C., Witten I.H.: Mining meaning from Wikipedia. Int. J. Hum. Comput. Stud. 67(9), 716–754 (2009)Google Scholar
  10. 10.
    Milne D., Medelyan O., Witten I.H.: Mining domain-specific thesauri from Wikipedia: a case study. In: Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence, Hong Kong, China, 2006, pp. 442–448Google Scholar
  11. 11.
    Milne D., Witten I.H.: An effective, low-cost measure of semantic relatedness obtained from Wikipedia links. In: Wikipedia and Artificial Intelligence: An Evolving Synergy, Chicago, IL, 2008, pp. 25–30Google Scholar
  12. 12.
    Medelyan O.: Human-competitive automatic topic indexing. Ph.D thesis, University of Waikato, Hamilton (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute of Computer ScienceWarsaw University of TechnologyWarszawaPoland

Personalised recommendations