Advertisement

PrOnto: A Local Search Engine for Digital Libraries

  • Janusz Granat
  • Edward Klimasara
  • Anna Mościcka
  • Sylwia Paczuska
  • Andrzej P. Wierzbicki
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 541)

Abstract

This chapter describes system PrOnto version 2.0 and results of work on this system in the SYNAT project. After the introduction, the chapter presents shortly the functionality of PrOnto that is a system of personalized search for information and knowledge in large text repositories. Further the chapter presents elements of the personalized ontological profile of the user, the problem of finding similar concepts in many such profiles, and the issue of finding interesting documents in large text repositories, together with tests of the system and conclusions.

Keywords

Search engine Local search Digital library 

Notes

Acknowledgments

This work has been supported by the National Centre for Research and Development (NCBiR) under research grant no. SP/I/1/77065/10 SYNAT: “Establishment of the universal, open, hosting and communicational, repository platform for network resources of knowledge to be used by science, education and open knowledge society” as a part of a strategic programme for Research and Development: “The interdisciplinary system of scientific and technological information”.

References

  1. 1.
    Grupa Technologii Językowych G4.19 Politechniki Wrocławskiej http://nlp.pwr.wroc.pl/takipi/
  2. 2.
    Wierzbicki, A.P., Nakamori, Y. (eds.): Creative environments issues of creativity support for the knowledge civilization age. Studies in computational intelligence, Vol. 59. Springer, Heidelberg (2007) Google Scholar
  3. 3.
    Wierzbicki, A.P.: The problem of objective ranking: foundations, approaches and applications. J. Telecommun. Inf. Technol. 3, 15–23 (2008)Google Scholar
  4. 4.
    Wierzbicki, A.P.: On the role of intuition in decision making and some ways of multicriteria aid of intuition. Multiple Criteria Decis. Making 6, 65–78 (1997)CrossRefMATHGoogle Scholar
  5. 5.
    Wierzbicki, A.P., Nakamori, Y.: Creative space: Models of Creative Processes for the Knowledge Civilization Age. Studies in Computational Intelligence, Vol. 10. Springer, Heidelberg (2006)Google Scholar
  6. 6.
    Antoniou, G., Van Harmelen, F.: A Semantic Web Prime. The MIT Press, Cambridge (2004)Google Scholar
  7. 7.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Signapore (2006)MATHGoogle Scholar
  8. 8.
    Broekstra, J., Ehrig, M., Haase, P., Van Harmelen, F., Menken, M., Mika, P., Schnizler, B., Siebes, R.: Bibster—a semantics-based bibliographic Peer-to-Peer system. In: Proceedings of the Third International Semantic Web Conference, Hiroshima, Japan, pp. 122–136 (2004)Google Scholar
  9. 9.
    Chudzian, C.: Ontology creation process in knowledge management support system for a research institute. Int. J. Telecommun. Inf. Technol. 4, 47–53 (2008)Google Scholar
  10. 10.
    Chudzian, C., Klimasara, E., Paterek, A., Sobieszek, J., Wierzbicki, A.P.: Personalized search using knowledge collected and made accessible s model of ontological profile of the user and group in PrOnto system. SYNAT Workshop, Warsaw (2011)Google Scholar
  11. 11.
    Chudzian C., Granat J., Klimasara E., Sobieszek J., Wierzbicki A.P.: Personalized knowledge mining in large text sets. J. Telecommun. Inf. Technol. Nat. Inst. Telecommun. 3, 123–130 (2011)Google Scholar
  12. 12.
    Chudzian, C., Klimasara, E., Sobieszek, J., Wierzbicki, A.P.: Wykrywanie wiedzy w dużych zbiorach danych: Analiza tekstu i inżynieria ontologiczna. Sprawozdanie prac PBZ Usługi i sieci teleinformatyczne następnej generacji—aspekty techniczne, aplikacyjne i rynkowe, grupa tematyczna i: Systemy wspomagania decyzji regulacyjnych: Wykrywanie wiedzy w dużych zbiorach danych telekomunikacyjnych. Instytut Łączności (2009)Google Scholar
  13. 13.
    Davies, J., Fensel, D., van Harmelen, F. (eds.): Towards the Semantic Web-Ontology-Driven Knowledge Management. John Wiley & Sons Ltd, England (2003) Google Scholar
  14. 14.
    Davies, J., Duke, A., Sure, Y.: Ontoshare—an ontology-based knowledge sharing system for virtual communities of practice. J. Univers. Comput. Sci. 10(3), 262–283 (2004)Google Scholar
  15. 15.
    Dieng, R., Corby, O.: Knowledge Engineering and Knowledge Management: Methods, Models and Tools. Springer, Berlin (2000)CrossRefGoogle Scholar
  16. 16.
    Ding, Y., Foo, S.: Ontology research and development. Part I—a review of ontology generation. J. Inf. Sci. 28(2), 123–136 (2002)Google Scholar
  17. 17.
    Ehrig, M., Haase, P., Schnizler, B., Staab, S., Tempich, C., Siebes, R., Stuckenschmidt, H.: SWAP: Semantic Web and Peerto-to-Peer Project Deliverable 3.6 Refined Methods. (2003)Google Scholar
  18. 18.
    Ehrig, M., Tempich, C., Aleksovski, Z.: SWAP: Semantic Web and Peer-to-Peer Project Deliverable 4.7 Final Tools. (2004)Google Scholar
  19. 19.
    Ehrig, M.: Ontology Alignment: Bridging the Semantic Gap (Semantic Web and Beyond). Springer, New York (2006)Google Scholar
  20. 20.
    Ren, H., Tian, J., Wierzbicki, A.P., Nakamori, Y.,Klimasara, E.: Ontology construction and its applications in local research communities. In: Dolk, D., Granat, J. (eds.) Modeling for Decision Support for Network-Based Services, Springer, Heidelberg, Germany pp. 279–317, Lectures Notes in Business Processing, Vol. 42 (2012) Google Scholar
  21. 21.
    Sobieszek, J.: Towards a unified architecture of knowledge management system for a research institute. Int. J. Telecommun. Inf. Technol. 4, 54–59 (2008)Google Scholar
  22. 22.
    Tian, J., Wierzbicki, A.P., Ren, H., Nakamori, Y.: A study of knowledge creation support in a Japanese research institute. Int. J. Knowl. Syst. Sci. 3(1), 7–17 (2006)Google Scholar
  23. 23.
    W3C Semantic Web Best Practices and Deployment Working Group.: Ontology driven architectures and potential uses of the semantic web in systems and software engineering. http://www.w3.org/2001/sw/BestPractices/SE/ODA/ (2006)
  24. 24.
    Web-Ontology Working Group: OWL Web Ontology Language Guide, http://www.w3.org/TR/owl-guide/ (2004)
  25. 25.
    Gadamer, H.-G.: Warheit und Methode. Grundzüge einer philosophishen Hermeneutik. J.B.C. Mohr (Siebeck), Tübingen (1960)Google Scholar
  26. 26.
    Granat, J., Klimasara, E., Mościcka, A., Paczuska, S., Pajer, M., Wierzbicki, A.P.: Hermeneutic cognitive process and its computerized support. In: Bembenik, R., Skonieczny, Ł., Rybiński, H., Kryszkiewicz, M., Niezgódka, M. (eds.), Intelligent Tools for Building a Scientific Information Platform), Studies in Computational Intelligence, vol. 467, pp. 281–304. Springer, Berlin (2013)Google Scholar
  27. 27.
    Król Z.: The emergence of new concepts in science. Creative environments: Issues of creativity support for the knowledge civilization age. In: Wierzbicki, A.P., Nakamori, Y. (eds.) Chapter 17, Springer, Heidelberg (2007) Google Scholar
  28. 28.
  29. 29.
  30. 30.
    Jin, J., Nakamori, Y., Wierzbicki, A.P.: A study a multiatrribute aggregation approaches to product recommendation. J. Adv. Fuzzy Syst. 2013, (2013) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Janusz Granat
    • 1
  • Edward Klimasara
    • 1
  • Anna Mościcka
    • 1
  • Sylwia Paczuska
    • 1
  • Andrzej P. Wierzbicki
    • 1
  1. 1.National Institute of TelecommunicationsWarsawPoland

Personalised recommendations