Algorithmic Aspects of Combinatorial Discrepancy

  • Nikhil Bansal
Part of the Lecture Notes in Mathematics book series (LNM, volume 2107)


This chapter describes some recent results in combinatorial discrepancy theory motivated by designing efficient polynomial time algorithms for finding low discrepancy colorings. Until recently, the best known results for several combinatorial discrepancy problems were based on counting arguments, most notably the entropy method, and were widely believed to be non-algorithmic. We describe some algorithms based on semidefinite programming that can achieve many of these bounds. Interestingly, the new connections between semidefinite optimization and discrepancy have lead to several new structural results in discrepancy itself, such as tightness of the so-called determinant lower bound and improved bounds on the discrepancy of union of set systems. We will also see a surprising new algorithmic proof of Spencer’s celebrated six standard deviations result due to Lovett and Meka, that does not rely on any semidefinite programming or counting argument.


Polynomial Time Algorithm Entropy Method Semidefinite Programming Combinatorial Discrepancy Alive Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    N. Alon, J.H. Spencer, The probabilistic method. With an appendix on the life and work of Paul Erdős. 2nd ed. (Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, Chichester, xvi, 301 p., New York, 2000)Google Scholar
  2. 2.
    W. Banaszczyk, Balancing vectors and Gaussian measures of n-dimensional convex bodies. Random Struct. Algorithm 12(4), 351–360 (1998). doi:10.1002/(SICI)1098-2418(199807)12:4<351::AID-RSA3>3.0.CO;2-S
  3. 3.
    N. Bansal, Constructive Algorithms for Discrepancy Minimization, in Foundations of Computer Science (FOCS), 2010, pp. 3–10Google Scholar
  4. 4.
    N. Bansal, J.H. Spencer, Deterministic discrepancy minimization., in 19th annual European symposium, Saarbrücken, Germany, September 5–9, 2011. Proceedings, Algorithms – ESA 2011, ed. by C. Demetrescu, et al. Lecture Notes in Computer Science, vol. 6942 (Springer, Berlin, 2011), pp. 408–420. doi:10.1007/978-3-642-23719-5_35
  5. 5.
    J. Beck, Roth’s estimate of the discrepancy of integer sequences is nearly sharp. Combinatorica 1, 319–325 (1981). doi:10.1007/BF02579452
  6. 6.
    J. Beck, T. Fiala, Integer-making theorems. Discrete Appl. Math. 3, 1–8 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    J. Bourgain, L. Tzafriri, Invertibility of “large” submatrices with applications to the geometry of Banach spaces and harmonic analysis. Isr. J. Math. 57(2), 137–224 (1987). doi:10.1007/BF02772174
  8. 8.
    K. Chandrasekaran, S. Vempala, A discrepancy based approach to integer programming. CoRR abs/1111.4649 (2011)Google Scholar
  9. 9.
    M. Charikar, A. Newman, A. Nikolov, Tight Hardness Results for Minimizing Discrepancy, in Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23–25, 2011, ed. by D. Randall, 2011, pp. 1607–1614Google Scholar
  10. 10.
    B. Chazelle, The discrepancy method. Randomness and complexity. (Cambridge University Press, Cambridge, 2000), p. 463CrossRefzbMATHGoogle Scholar
  11. 11.
    T.M. Cover, J.A. Thomas, Elements of information theory. 2nd ed. (Wiley-Interscience. Wiley, Hoboken, NJ, 2006), p. 748. doi:10.1002/047174882X
  12. 12.
    B. Doerr, Linear and hereditary discrepancy. Combinator. Probab. Comput. 9(4), 349–354 (2000). doi:10.1017/S0963548300004272
  13. 13.
    M. Drmota, R.F. Tichy, Sequences, discrepancies and applications. Lecture Notes in Mathematics, vol. 1651 (Springer, Berlin, 1997), p. 503. doi:10.1007/BFb0093404
  14. 14.
    F. Eisenbrand, D. Pálvölgyi, T. Rothvoß, Bin Packing via Discrepancy of Permutations, in Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23–25, 2011, ed. by D. Randall, 2011, pp. 476–481Google Scholar
  15. 15.
    V. Guruswami, Inapproximability results for set splitting and satisfiability problems with no mixed clauses. Algorithmica 38(3), 451–469 (2004). doi:10.1007/s00453-003-1072-z
  16. 16.
    J.H. Kim, J. Matoušek, V.H. Vu, Discrepancy after adding a single set. Combinatorica 25(4), 499–501 (2005). doi:10.1007/s00493-005-0030-x
  17. 17.
    D.J. Kleitman, On a combinatorial conjecture of Erdős. J. Combin. Theory 1, 209–214 (1966). doi:10.1016/S0021-9800(66)80027-3
  18. 18.
    L. Lovász, J.H. Spencer, K. Vesztergombi, Discrepancy of set-systems and matrices. Eur. J. Combinator. 7, 151–160 (1986)CrossRefzbMATHGoogle Scholar
  19. 19.
    S. Lovett, R. Meka, Constructive Discrepancy Minimization by Walking on the Edges, in Foundation of Computer Science (FOCS), 2012, pp. 61–67Google Scholar
  20. 20.
    J. Matoušek, Geometric discrepancy. An illustrated guide. Revised paperback reprint of the 1999 original. Algorithms and Combinatorics, vol. 18 (Springer, Dordrecht, 2010), p. 296. doi:10.1007/978-3-642-03942-3
  21. 21.
    J. Matoušek, The determinant bound for discrepancy is almost tight. Proc. Am. Math. Soc. 141(2), 451–460 (2013). doi:10.1090/S0002-9939-2012-11334-6
  22. 22.
    A. Nikolov, K. Talwar, L. Zhang, The Geometry of Differential Privacy: the Approximate and Sparse Cases., in Symposium on Theory of Computing (STOC), 2013. to appear.Google Scholar
  23. 23.
    D. Pálvölgyi, Indecomposable coverings with concave polygons. Discrete Comput. Geom. 44(3), 577–588 (2010). doi:10.1007/s00454-009-9194-y
  24. 24.
    T. Rothvoß, The entropy rounding method in approximation algorithms, in Symposium on Discrete Algorithms (SODA), 2012, pp. 356–372Google Scholar
  25. 25.
    T. Rothvoß, Approximating bin packing within o(log opt * log log opt) bins. CoRR abs/1301.4010 (2013)Google Scholar
  26. 26.
    M. Sipser, Introduction to the theory of computation. (PWS Publishing, Boston, MA, 1997), p. 396zbMATHGoogle Scholar
  27. 27.
    J.H. Spencer, Six standard deviations suffice. Trans. Am. Math. Soc. 289(2), 679–706 (1985). doi:10.2307/2000258
  28. 28.
    A. Srinivasan, Improving the Discrepancy Bound for Sparse Matrices: Better Approximations for Sparse Lattice Approximation Problems, in Symposium on Discrete Algorithms (SODA), 1997, pp. 692–701Google Scholar
  29. 29.
    L. Vandenberghe, S. Boyd, Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996). doi:10.1137/1038003
  30. 30.
    R. Vershynin, John’s decompositions: Selecting a large part. Isr. J. Math. 122, 253–277 (2001). doi:10.1007/BF02809903

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations