A Matlab GUI Package for Comparing Data Clustering Algorithms

Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 543)

Abstract

The result of one clustering algorithm can be very different from that of another for the same input dataset as the other input parameters of an algorithm can substantially affect the behavior and execution of the algorithm. Cluster validity indices measure the goodness of a clustering solution. Cluster validation is very important issue in clustering analysis because the result of clustering needs to be validated in most applications. In most clustering algorithms, the number of clusters is set as a user parameter. There are a number of approaches to find the best number of clusters. Validity measures can be used to find the partitioning that best fits the underlying data (to find how good the clustering is). This chapter describes an application (CLUSTER) developed in the Matlab/GUI environment that represents an interface between the user and the results of various clustering algorithms. The user selects algorithm, internal validity index, external validity index, number of clusters, number of iterations etc. from the active windows. In this Package we compare the results of k-means, fuzzy c-means, hierarchical clustering and multiobjective clustering with support vector machine (MocSvm). This chapter presents a MATLAB Graphical User Interface (GUI) that allows the user to easily “find” the goodness of a clustering solution and immediately see the difference of those algorithms graphically. Matlab (R2008a) Graphical User Interface is used to implement this application package.

Keywords

Clustering Validity index Matlab Graphical user interface CAD Interface 

References

  1. 1.
    J.B. MacQueen, Some methods for classification and analysis of multivariate observations, in Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1 (University of California Press, Berkeley, 1967), pp. 281–297Google Scholar
  2. 2.
    A. Moore, k-Means and hierarchical clustering—tutorial slides, http://www2.cs.cmu.edu/~awm/tutorials/kmeans.html
  3. 3.
    J.C. Dunn, A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 3, 32–57 (1973)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algoritms (Plenum Press, New York, 1981)CrossRefGoogle Scholar
  5. 5.
    S.C. Johnson, Hierarchical Clustering Schemes. Psychometrika 2, 241–254 (1967)CrossRefGoogle Scholar
  6. 6.
    R. D’andrade, U-statistic hierarchical clustering. Psychometrika 4, 58–67 (1978)Google Scholar
  7. 7.
    U. Maulik, A. Mukhopadhyay, S. Bandyopadhyay, Combining Pareto-optimal clusters using supervised learning for identifying co-expressed genes. BMC Bioinformatics 10(27) (2009) Google Scholar
  8. 8.
    U. Maulik, S. Bandyopadhyay, A. Mukhopadhyay, Multiobjective Genetic Algorithms for Clustering: Applications in Data Mining and Bioinformatics (Springer, Heidelberg, 2011). ISBN 978-3-642-16614-3. http://www.springer.com/computer/ai/book/978-3-642-16614-3
  9. 9.
    A. Mukhopadhyay, U Maulik, Unsupervised pixel classification in satellite imagery using multiobjective fuzzy clustering combined with SVM classifier. IEEE Trans. Geosci. Remote Sens. 47(4), 1132–1138 (2009)Google Scholar
  10. 10.
    A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay, Multi-objective genetic clustering with ensemble among Pareto front solutions: application to MRI brain image segmentation, in Proceedings of International Conference ICAPR 2009 (Kolkata, Feb 2009), pp. 236–239Google Scholar
  11. 11.
    A. Mukhopadhyay, U Maulik, S. Bandyopadhyay, Multi-objective genetic algorithm based fuzzy clustering of categorical attributes. IEEE Trans. Evol. Comput. 13(5), 991–1005 (2009)Google Scholar
  12. 12.
    U. Maulik, A. Mukhopadhyay, Simulated annealing based automatic fuzzy clustering combined with ANN classification for analyzing microarray data. Comput. Oper. Res. 37(8), 1369–1380 (2009)CrossRefGoogle Scholar
  13. 13.
    A. Mukhopadhyay, U. Maulik, Towards improving fuzzy clustering using support vector machine: application to gene expression data. Pattern Recogn. 42(11), 2744–2763 (2009)CrossRefMATHGoogle Scholar
  14. 14.
    J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms (Plenum Press, New York, 1981)CrossRefMATHGoogle Scholar
  15. 15.
    D.L. Davies, D.W. Bouldin, A cluster separationmeasure. IEEE Trans. Pattern Anal. Mach. Intell. 1, 224–227 (1979)CrossRefGoogle Scholar
  16. 16.
    J.C. Dunn, Well separated clusters and optimal fuzzy partitions. J. Cyberns. 4, 95–104 (1974)MathSciNetGoogle Scholar
  17. 17.
    X.L. Xie, G. Beni, A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 13, 841–847 (1991)CrossRefGoogle Scholar
  18. 18.
    U. Maulik, S. Bandyopadhyay, Performance evaluation of some clustering algorithms and validity indices. IEEE Trans. Pattern Anal. Mach. Intell. 24(12), 1650–1654 (2002)CrossRefGoogle Scholar
  19. 19.
    P. Rousseeuw, Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comp. App. Math 20, 53–65 (1987)CrossRefMATHGoogle Scholar
  20. 20.
    A. Ben-Hur, G. Isabelle, Detecting stable clusters using principal component analysis, in Functional Genomics: Methods & Protocols, ed. by M.J. Brownstein, A. Kohodursky (Humana press, USA, 2003), pp. 159–182 Google Scholar
  21. 21.
    K.Y. Yeung, W.L. Ruzzo, An empirical study on principal component analysis for clustering gene expression data. Bioinformatics 17(9), 763–774 (2001)CrossRefGoogle Scholar
  22. 22.
    S. Bandyopadhyay, U. Maulik, A. Mukhopadhyay, Multiobjective genetic clustering for pixel classification in remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 45(5), 1506–1511 (2007)CrossRefGoogle Scholar
  23. 23.
    The Mathworks, Building GUIs with MATLAB (The Mathworks Inc, Natick, 1997)Google Scholar
  24. 24.
  25. 25.
  26. 26.
  27. 27.
  28. 28.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringUniversity of KalyaniKalyaniIndia
  2. 2.Advanced Computing and Microelectronics UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations