Skip to main content

Comparison of Alternating-Current Losses in Two-Layer Superconducting Cables Constructed by Shell-Type and Solid-Core Cylindrical Wires

  • Chapter
  • First Online:
Progress in Exergy, Energy, and the Environment
  • 4272 Accesses

Abstract

Alternating-current losses in two-layer power transmission cables of type-II superconducting wires with cylindrical geometry are numerically investigated with regard to wire cross section. Losses in shell-type and solid-core superconducting wires are calculated through the Finite Element Method for an applied alternating current with 50 Hz frequency. Each cable layer is composed of 20 wires which have 1.0 mm radii, while the thickness of shell-type wires is 0.1 mm. The two wire layers are wound over a copper core such that the inner and outer layer radii are 20.0 and 25.0 mm, respectively. Alternating-current losses at small applied current amplitudes in shell-type wires are three-times smaller than in solid-core wires, where the discrepancy diminishes for high current amplitudes above 90 % of the critical current. Besides, losses in both configurations are considerably higher in outer-layer wires for current amplitudes less than half the critical current, while they converge at higher amplitudes. The reason for smaller losses in shell-type wires at low applied current amplitudes is associated to the fact that current distribution is more homogeneous, whereas magnetic field lines penetrate into the hollow core of these wires.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dechoux N, Jiménez C, Chaudouët P, Rapenne L, Sarigiannidou E, Robaut F, Petit S, Garaudée S, Porcar L, Soubeyroux JL, Odier P, Bruzek CE, Decroux M (2012) Textured YBCO films grown on wires: application to superconducting cables. Supercond Sci Technol 25(12):125008

    Article  Google Scholar 

  2. Jiang J, Starch WL, Hannion M, Kametani F, Trociewitz UP, Hellstrom EE, Larbalestier DC (2011) Doubled critical current density in Bi-2212 round wires by reduction of the residual bubble density. Supercond Sci Technol 24(8):082001

    Article  Google Scholar 

  3. Majoros M, Sumption MD, Susner MA, Kovacs C, Collings EW, Peng X, Doll D, Tomsic M, Lyons D (2012) A model superconducting helical undulator fabricated using a small filament, tube-type multifilamentary Nb3Sn wire. Supercond Sci Technol 25(11):115006

    Article  Google Scholar 

  4. Kim S-K, Ha S-K, Kim J-G, Kim S, Park M, Yu I-K, Lee S, Sim K (2013) Design and AC loss analysis of a 22.9 kV/50 MVA class triaxial HTS power cable. J Supercond Novel Magn 26(4):755–758

    Article  Google Scholar 

  5. Maruyama O, Ohkuma T, Masuda T, Ashibe Y, Mukoyama S, Yagi M, Saitoh T, Hasegawa T, Amemiya N, Ishiyama A, Hayakawa N (2013) Development of 66 kV and 275 kV class REBCO HTS power cables. IEEE Trans Appl Supercond 23(3):5401405

    Article  Google Scholar 

  6. Rostila L, Lehtonen J, Masti M, Lallouet N, Saugrain J-M, Allais A, Schippl K, Schmidt F, Balog G, Marot G, Ravex A, Usoskin A, Gömöry F, Klinčok B, Šouc J, Freyhardt HC (2006) Design of a 30 m long 1 kA 10 kV YBCO cable. Supercond Sci Technol 19(4):418–422

    Article  Google Scholar 

  7. Allais A, Isfort D, Theune C-F, Porcher K (2008a) Method for the production of superconducting electrical conductor. Patent Number: US2008/0119365.A1

    Google Scholar 

  8. Allais A, Isfort D, Theune C-F, Porcher K (2008b) Method for the production of superconducting electrical conductor. Patent Number: EP1916720

    Google Scholar 

  9. Bruzek CE, Allais A, Morice S, Theune C-F, Petit S, Mikolajczyk M, Dechoux N, Jimenez C, Sarigiannidou E, Porcar L, Soubeyroux J-L, Odier P, Waeckerle T (2012) New HTS 2G round wires. IEEE Trans Appl Supercond 22(3):5800204

    Article  Google Scholar 

  10. Ferrando V, Orgiani P, Pogrebnyakov AV, Chen J, Li Q, Redwing JM, Xi XX, Giencke JE, Eom C-B, Feng Q-R, Betts JB, Mielke CH (2005) High upper critical field and irreversibility field in MgB2 coated-conductor fibers. Appl Phys Lett 87(25):252509

    Article  Google Scholar 

  11. Ma B, Balachandran U (2006) Prospects for the fabrication of low aspect ratio coated conductors by inclined substrate deposition. Supercond Sci Technol 19(6):497–502

    Article  Google Scholar 

  12. Šouc J, Vojenčiak M, Gömöry F (2010) Experimentally determined transport and magnetization ac losses of small cable models constructed from YBCO coated conductors. Supercond Sci Technol 23(4):045029

    Article  Google Scholar 

  13. Odier P, Allais A, Millon C, Morlens S, Ortega L, Jiménez C, Porcar L, Chaud X, Chaudouët P, Pairis S, Tixador P, Soubeyroux JL (2009) New YBCO superconducting wires obtained from narrow textured tubes. Supercond Sci Technol 22(12):125024

    Article  Google Scholar 

  14. Mawatari Y (2011) Superconducting tabular wires in transverse magnetic fields. Phys Rev B 83(13):134512

    Article  Google Scholar 

  15. Gömöry F, Inanir F (2012) AC losses in coil wound from round wire coated by a superconducting layer. IEEE Trans Appl Supercond 22(3):4701704

    Article  Google Scholar 

  16. Pi W, Wang Y-S, Dong J, Chen L (2010) AC alternating-current loss analyses of a thin high-temperature superconducting tube carrying AC transport current in AC external magnetic field. Chin Phys Lett 27(3):037401

    Article  Google Scholar 

  17. Gömöry F, Vojenčiak M, Pardo E, Šouc J (2009) Magnetic flux penetration and AC loss in a composite superconducting wire with ferromagnetic parts. Supercond Sci Technol 22(3):034017

    Article  Google Scholar 

  18. Brandt EH (1996) Superconductors of finite thickness in a perpendicular magnetic field: strips and slabs. Phys Rev B Condens Matter 54(6):4246–4264

    Article  Google Scholar 

  19. Sirois F, Roy F (2007) Computation of 2-D current distribution in superconductors of arbitrary shapes using a new semi-analytical method. IEEE Trans Appl Supercond 17(3):3836–3845

    Article  Google Scholar 

Download references

Acknowledgments

This study is supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) under the grant number 110T876.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fedai Inanir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Inanir, F., Cicek, A. (2014). Comparison of Alternating-Current Losses in Two-Layer Superconducting Cables Constructed by Shell-Type and Solid-Core Cylindrical Wires. In: Dincer, I., Midilli, A., Kucuk, H. (eds) Progress in Exergy, Energy, and the Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-04681-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04681-5_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04680-8

  • Online ISBN: 978-3-319-04681-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics