Advertisement

Large Eddy Simulation of Diluted Turbulent Spray Combustion Based on FGM Methodology: Effect of fuel and Mass Loading

  • Amsini SadikiEmail author
  • Mouldi Chrigui
  • Fernando Sacomano
  • Assaad R. Masri
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 19)

Abstract

A numerical methodology relying on Large Eddy Simulation is used to analyze and evaluate the impact of fuel and mass loading on turbulent spray combustion. To retrieve the flow, mixing and combustion proper-ties, an Eulerian-Lagrangian approach is adopted. The method includes a full two-way coupling between the interacting two phases in presence, while the evaporation process is described by a non-eqnilibrium vaporization model. The carrier phase turbulence is captured by a combustion LES technique in which first order sub-grid scale models are applied.

Two different fuels are used to produce spray jets through a pilot flame and a co-flowing atmospheric air. A spray pre-evaporation zone enables the combustion regime to turn from diffusion to partially premixed mode. The first liquid fuel is acetone, preferred for its ability to vaporize quickly. It is modeled by a detailed reaction mechanism including 84 species and 409 elementary reactions. The ethanol as second fuel is widely used as alternative fuel. It is modeled by a detailed reaction mechanism consisting of 56 species and 351 reversible reactions. To reduce the computational costs, the combustion is described by means of a detailed tabulated chemistry approach according to the Flamelet Generated Manifold (FGM) strategy. The occurring flow and combustion properties are numerically analyzed and compared with experimental data for both fuels under different mass loading conditions. The impact of fuel and mass loading on turbulent spray combustion is evaluated in terms of flame structure, exhaust gas temperature, droplet velocities and diameters, droplet velocity fluctuations, and spray volume flux at different distances from the exit planes.

Keywords

LES Partially Premixed Combustion Spray FGM Euler-Lagrange Fuel effect Mass loading impact. 

Notes

Acknowledgements

The financial support by the Deutsche Forschungsgemeinschaft (DFG) is highly recognized.

References

  1. 1.
    B. Abramzon and W. A. Sirignano, Droplet Vaporization Model for Spray Combustion  Calculations, Int. J. Heat Mass Transfer, Vol. 32, 1989, pp. 1605–1618.Google Scholar
  2. 2.
    S. V. Apte, K.Mahesh, M. Gorokhovski, P. Moin, Stochastic modeling of atomizing spray in a complex swirl injector using large eddy simulation, Proceedings of the Combustion Institute, Volume 32, Issue 2, 2009, Pages 2257–2266.Google Scholar
  3. 3.
    J. Bellan, L.C. Selle, Large Eddy Simulation composition eqnations for single-phase and two-phase fully multicomponent flows Original, Proceedings of the Combustion Institute, Volume 32, Issue 2, 2009, Pages 2239–2246.Google Scholar
  4. 4.
    A. Berlemont M. S. Grancher and G. Gouesbet, Heat and mass transfer coupling between vaporizing droplets and turbulence using a Lagrangian approach, J. of. Heat and Mass Transfer Vol.38, 1995, 3023–3034.Google Scholar
  5. 5.
    R. W., Bilger, S. H., St˚arner, and R. J., Kee, On reduced mechanisms for methane-air combustion in nonpremixed flames. Combustion and Flame, 80, 1990, pp 135–149.Google Scholar
  6. 6.
  7. 7.
    M. Chrigui, J. Gounder, A. Sadiki, A. R. Masri, J. Janicka, Partially premixed reacting acetone spray using LES and FGM tabulated chemistry, Combustion and Flame, Volume 159, Issue 8, Pages 2718–2741, August 2012.Google Scholar
  8. 8.
    M. Chrigui, J. Gounder, A. Sadiki, A. R. Masri, J. Janicka, Acetone Droplet Behavior in Reacting and Non Reacting Turbulent Flow, Flow Turbulence and Combustion, Volume 90, Issue 2, pp 419–447, 2013.Google Scholar
  9. 9.
    M. Chrigui, A. R. Masri, Amsini Sadiki, Johannes Janicka, Large Eddy Simulation of a Polydisperse Ethanol Spray Flame, Flow Turbulence and Combustion, Volume 90, Issue 4, pp 813–832, June 2013.Google Scholar
  10. 10.
    M. Chrigui, F. Sacomano, A. Sadiki A. R. Masri, Evaporation Modeling for Polydisperse Spray in Turbulent Flow, (present book), TCS3-Book-chapter.Google Scholar
  11. 11.
    U. Eguz, L.M.T. Somers, L.P.H. de Goey, Modeling of PCCI Combustion with the FGM approach, 13th International Conference on Numerical Combustion April 27–29, 2011, Corfu, Greece.Google Scholar
  12. 12.
    G. M. Faeth, Spray combustion phenomena, Proc. Combust. Inst. 26,1996, pp 1593–1612.Google Scholar
  13. 13.
    B. Fiorina, O. Gicquel, L. Vervisch, S. carpentier, N. Darabiha: Premixed turbulent combustion modeling using tabulated detailed chemistry and PDF, Proc. of the combustion institute, Vol. 30, pp. 867–874 (2005).Google Scholar
  14. 14.
    H.W. Ge and E. Gutheil, Probability density function (pdf) simulation of turbulent spray flows, Atomiz. Sprays 16 (2006), pp. 531–542.Google Scholar
  15. 15.
    M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, A dynamic sub-grid scale eddy viscosity model, 1991, Phys. Fluids A, 3: 1760–1765.Google Scholar
  16. 16.
    J. D. Gounder and A. R. Masri, Flow field and Mass Flux Measurements near the Exit Plane of Spray Jets, ICLASS 2009, 11th Triennial International Annual Conference on Liquid Atomization and Spray Systems, Vail, Colorado USA, July 2009.Google Scholar
  17. 17.
    E. Gutheil, Modeling and Simulation of Droplet and Spray Combustion, Handbook of combustion, Wiley-VCH Verlag GmbH & Co. KGaA, 2010.Google Scholar
  18. 18.
    J. Janicka, A. Sadiki: Large Eddy Simulation of turbulent combustion systems, Proc. Of the combustion institute, 30, pp. 537–547, 2005.Google Scholar
  19. 19.
    W.P. Jones, S. Lyra, A.J. Marquis, Large Eddy Simulation of evaporating kerosene and acetone sprays, International Journal of Heat and Mass Transfer, Vol. 53, Issues 11–12, 2010, Pages 2491–2505.Google Scholar
  20. 20.
    T. Landenfeld, A. Sadiki, J. Janicka, A Turbulence-Chemistry Interaction Model Based on a Multivariate Presumed Beta-PDF Method for Turbulent Flames, Flow, Turbulence and Combustion, Volume 68,Issue 2, 2002, pp 111–135.Google Scholar
  21. 21.
    T. Lehnhäuser and M. Schäfer. Improved linear interpolation practice for finitevolume schemes on complex grids. Int. J. Numer. Meth. Fluids, 38(7), 2002, pp 625–645.Google Scholar
  22. 22.
    N. M. Marinov: A detailed chemical kinetic model for high temperature ethanol oxidation. Int. J. Chem. Kinet., 31: 183–220, 1999.Google Scholar
  23. 23.
    A. R. Masri, J. D. Gounder, Turbulent Spray Flames of Acetone and Ethanol Approaching Extinction, Journal: Combustion Science and Technology, vol. 182, 2010, pp. 702–715.Google Scholar
  24. 24.
    A. Milford, C.B. Devaud, Investigation of an inhomogeneous turbulent mixing model for conditional moment closure applied to autoignition, Comb. and Flame, Vol. 157, Issue 8, 2010, Pages 1467–1483.Google Scholar
  25. 25.
    R. S. Miller, K. Harstad, and J. Bellan. Evaluation of eqnilibrium and non-eqnilibrium evaporation models for many gas-liquid flow simulations. Int. J. Multiphase Flow, 24:1026–1055, 1998.Google Scholar
  26. 26.
    M. Mortensen, R. W. Bilger “Derivation of the conditional moment closure eqnations for spray combustion” Combustion and Flame, Volume 156, Issue 1, 2009, Pages 62–72.Google Scholar
  27. 27.
    S. Navarro-Martinez, A. Kronenburg, LES–CMC simulations of a lifted methane flame, Proceedings of the Combustion Institute, Volume 32, Issue 1, 2009, Pages 1509–1516.Google Scholar
  28. 28.
    A. Neophytou, E. Mastorakos, R.S. Cant, Complex chemistry simulations of spark ignition in turbulent sprays, Proceedings of the Combustion Institute, Volume 33, Issue 2, 2011, Pages 2135–2142.Google Scholar
  29. 29.
    C. Olbricht, A. Ketelheun, F. Hahn and J. Janicka, Assessing the predictive capabilities of Combustion LES as applied to the Sydney flame series, Flow Turbulence and Combustion, 83 (3), 2011, pp 513–547.Google Scholar
  30. 30.
    N. Patel and S. Menon, Simulation of spray–turbulence–flame interactions in a lean direct injection combustor, Combustion and Flame, Volume 153, Issues 1–2, April 2008, Pages 228–257.Google Scholar
  31. 31.
    C. Pera, J. Réveillon, L. Vervisch, P. Domingo, Modeling subgrid scale mixture fraction variance in LES of evaporating spray, Combustion and Flame, Volume 146, Issue 4, September 2006, Pages 635–648.Google Scholar
  32. 32.
    Cécile Pera, Julien Réveillon, Luc Vervisch, Pascale Domingo, Modeling subgrid scale mixture fraction variance in LES of evaporating spray, Combustion and Flame, Volume 146, Issue 4, 2006, Pages 635–648.Google Scholar
  33. 33.
    N. Peters, Laminar diffusion flamelet models in non-premixed turbulent combustion, Progress in Energy and Combustion Science, vol. 10, Issue 3, 1984, pp 319–339.Google Scholar
  34. 34.
    S. Pichon, G. Black, N. Chaumeix, M. Yahyaoui, J.M. Simmie, H. J. Curran, R. Donohue, The combustion chemistry of a fuel tracer: Measured flame speeds and ignition delays and a detailed chemical kinetic model for the oxidation of acetone, Com. & Flame, Vol. 156, 2009, pp 494–504.Google Scholar
  35. 35.
    C. Pierce and P. Moin, Progress variable approach for large eddy simulation of turbulent non-premixed combustion, J. Fluid Mechanic, Vol. 504:73–97.Google Scholar
  36. 36.
    H.Pitsch: Large-Eddy Simulation of Turbulent Combustion, Annual Re-view of Fluid Mechanics, Vol. 38: 453–482, 2006.Google Scholar
  37. 37.
    T. Poinsot and D. Veynante, Theoretical and Numerical Combustion, 3rd Edition, (2011).Google Scholar
  38. 38.
    J. Pozorski, S.A. Apte: Filtered particle tracking in isotropic turbulence and stochastic modeling of subgrid-scale dispersion, Int. J.of Multiph. Flow, Vol. 35 (2) pp. 118–128, 2009.Google Scholar
  39. 39.
    A. Sadiki, W. Ahmadi, M. Chrigui, Toward the Impact of Fuel Evaporation-Combustion Interaction on Spray Combustion in Gas Turbine Combustion Chambers. Part I: Effect of Partial Fuel Vaporization on Spray Combustion. Chapter in Experiments and Numerical Simulations of Diluted Spray Turbulent Combustion, Proceedings of the 1st International Workshop on Turbulent Spray Combustion, Series: ERCOFTAC Series, Vol. 17, Merci, Bart; Roekaerts, Dirk; SADIKI, AMSINI (Eds.), 2011.Google Scholar
  40. 40.
    A. Sadiki, M. Chrigui, and A. Dreizler, Thermodynamically Consistent Modelling of Gas Turbine Combustion Sprays, Fluid Mechanics and Its Applications 102, Flow and Combustion in Advanced Gas Turbine Combustors DOI 10.1007/978-94-007-5320-4 3.Google Scholar
  41. 41.
    A. Sadiki, M. Chrigui, J. Janicka, M.R. Maneshkarimi, Modeling and Simulation of Effects of Turbulence on Vaporization, Mixing and Combustion of Liquid-Fuel Sprays, In: Flow Turb. Comb., 75 (1–4), (2005).Google Scholar
  42. 42.
    P. Sagaut, Large Eddy Simulation for incompressible Flows, Springer, Berlin, 2001.Google Scholar
  43. 43.
    M. Sanjosé, J.M. Senoner, F. Jaegle, B. Cuenot, S. Moreau, T. Poinsot, Fuel injection model for Euler–Euler and Euler–Lagrange large-eddy simulations of an evaporating spray inside an aeronautical combustor, International Journal of Multiphase Flow, Volume 37, Issue 5, June 2011, Pages 514–529.Google Scholar
  44. 44.
    S.S. Sazhin.: Advanced models for fuel droplet heating and evaporation, Progress in Energy and Combustion Science 32, pp. 162–214, 2006.Google Scholar
  45. 45.
    P. Schroll, A.P. Wandel, R.S. Cant, E. Mastorakos, Direct numerical simulations of autoignition in turbulent two-phase flows, Proceedings of the Combustion Institute, Volume 32, Issue 2, 2009, Pages 2275–2282.Google Scholar
  46. 46.
    W. A. Sirignano, Fluid dynamics of sprays, J. Fluids Engng. Vol. 115, 1993, pp. 345–378.Google Scholar
  47. 47.
    S. H. Stårner, J. Gounder, and A. R. Masri, Effects of turbulence and carrier fluid on simple, turbulent spray jet flames, Com. & Flame, Vol. 143, 2005, pp 420–432.Google Scholar
  48. 48.
    J.A. Van Oijen, L.P.H. De Goey, A numerical study of confined triple flames using a flamelet-generated manifold, Combust. Theory Modelling, 2004, pp 141–163.Google Scholar
  49. 49.
    O. Vermorel, S. Richard, O. Colin, C. Angelberger, A. Benkenida, D. Veynante, Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle LES, Combustion and Flame, Volume 156, Issue 8, August 2009, Pages 1525–1541.Google Scholar
  50. 50.
    A. W. Vreman, B. A. Albrecht, J. A. van Oijen, L. P. H. de Goey, R. J. M. Bastiaans: Premixed and non-premixed generated manifolds in large-eddy simulation of Sandia flame D and F. Combust Flame 153, 394–416, 2008.Google Scholar
  51. 51.
    B. Wegner, A. Maltsev, C., Schneider, A., Sadiki, A., Dreizler, J., Janicka, Assessment of unsteady RANS in predicting swirl flow instability based on LES and Experiments. International Journal of Heat and Fluid Flow, 2004, 25:528–536.Google Scholar
  52. 52.
    M.R.G. Zoby, S. Navarro-Martinez, A. Kronenburg, A.J. Marquis, Evaporation rates of droplet arrays in turbulent reacting flows, Proceedings of the Combustion Institute, Volume 33, Issue 2, 2011, Pages 2117–2125.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Amsini Sadiki
    • 1
    Email author
  • Mouldi Chrigui
    • 1
    • 2
  • Fernando Sacomano
    • 1
  • Assaad R. Masri
    • 3
  1. 1.Institute for Energy and Power plant Technology, Department of Mechanical EngineeringTU DarmstadtDarmstadtGermany
  2. 2.Research Unit Materials, Energy and Renewable EnergiesUniversity of GafsaGafsaTunisia
  3. 3.School of Aerospace, Mechanical and Mechatronic EngineeringThe University of SydneySydneyAustralia

Personalised recommendations