Advertisement

Theoretical and Numerical Study of Evaporation Effects in Spray Flamelet Modeling

  • Hernan OlguinEmail author
  • Eva Gutheil
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 19)

Abstract

Even though laminar spray flames differ considerably from their gaseous counterpart, most often flamelet models employed in the simulation of turbulent spray combustion are based on laminar gas flame structures neglecting the influence of spray evaporation in the laminar spray flamelet. In this work, a combined theoretical and numerical study of the impact of spray evaporation on the structure of laminar spray flames is presented. Numerical simulations of an axisymmetric laminar mono-disperse ethanol/air counterflow spray flame are performed in order to evaluate the influence of spray evaporation on flame characteristics. Flame structures for different initial droplet radii and strain rates are considered. Special emphasis is given to the effects of the spray on extinction and on different local combustion regimes. Moreover, the classical flamelet equations are reinvestigated, and the derivation of spray flamelet equations is presented, where additional terms caused by spray evaporation are identified—the classical gas flamelet equations are recovered for non-evaporating conditions. Two new terms accounting for evaporation and for combined mixing and evaporation, respectively, are identified, and their relative importance is presented and discussed for the numerical spray flame structures. The results show that the distribution of the spray evaporation rate plays a key role in the characterization of the spray flame structure. The new source terms overweigh the dissipation term of the gas phase in most situations and regimes of the flame even for non-evaporating species. Therefore, spray evaporation should always be considered. The relevance of the present formulation for turbulent spray modeling is evaluated and discussed, and a novel spray flamelet formulation is suggested.

Keywords

Mixture Fraction Flame Structure Spray Flame Scalar Dissipation Rate Fuel Vapor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

H.O. thanks the DAAD for financial support through a research fellowship. Financial support of the German Research Foundation through the Graduate School “MathComp” of IWR is gratefully acknowledged.

References

  1. 1.
    Abramzon, B. and Sirignano, W. A., Droplet vaporization model for spray combustion calculation, Int. J. Heat Mass Transfer 32(9) (1989), pp. 1605–1618.CrossRefGoogle Scholar
  2. 2.
    Chen, Z. H., Lin, T. H. and Sohrab, S. H., Combustion of Liquid Fuel Sprays in Stagnation-Point Flow, Combust. Sci. Tech. 60 (1988), pp. 63–77.CrossRefGoogle Scholar
  3. 3.
    Chen, N. H., Rogg, B., and Bray, K. N. C., Modelling laminar two-phase counterflow flames with detailed chemistry and transport, Proc. Combust. Inst. 24 (1992), pp. 1513–1521.CrossRefGoogle Scholar
  4. 4.
    Chevalier, C., Entwicklung eines detallierten Reaktionsmechanismus zur Modellierung der Verbrennungsprozesse von Kohlenwasserstoffen bei Hoch- und Niedertemperaturbedingungen, Ph. D. Thesis, University of Stuttgart, Stuttgart (1993).Google Scholar
  5. 5.
    Continillo, G. and Sirignano, W. A., Counterflow Spray Combustion Modeling, Combust. Flame 81 (1990), pp. 325–340.CrossRefGoogle Scholar
  6. 6.
    Dhuchakallaya, I., Rattanadecho, P., Watkins, P., Auto-ignition and combustion of diesel spray using unsteady flamelet model, Applied Thermal Engineering 52 (2013), pp. 420–427.Google Scholar
  7. 7.
    Franzelli, B., Fiorina, B., Darabiha, N., A tabulated chemistry method for spray combustion, Proc. Combust. Inst. 34 (2013), pp. 1659–1666.CrossRefGoogle Scholar
  8. 8.
    Ge, H. W. and Gutheil, E., Simulation of a Turbulent Spray Flame using coupled PDF Gas Phase and Spray Flamelet Modeling, Combust. Flame 153 (2008), pp. 173–185.CrossRefGoogle Scholar
  9. 9.
    Ge, H. W., Düwel, I., Kronemayer, H., Dibble, R. W., Gutheil, E., Schulz, C., Wolfrum, J., Laser-Based Experimental and Monte Carlo PDF Numerical Investigation of an Ethanol/Air Spray Flame, Combust. Sci. Tech. 135 (2008), pp. 1529–1547.CrossRefGoogle Scholar
  10. 10.
    Gicquel, O., Darabiha, N., Thévenin, D., Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion, Proc. Combust. Inst. 28 (2000), pp. 1901–1908.CrossRefGoogle Scholar
  11. 11.
    Greenberg, J. B., and Sarig, N., An Analysis of Multiple Flames in Counterflow Spray Combustion, Combust. Flame 104 (1996), pp. 431–459.CrossRefGoogle Scholar
  12. 12.
    Gutheil, E., Structure and extinction of laminar ethanol-air spray flames, Combust. Theory and Modelling 5(2) (2001), pp. 131–145.CrossRefzbMATHGoogle Scholar
  13. 13.
    Gutheil, E., Multiple Solutions for Structures of Laminar Counterflow Spray Flames, Prog. Comput. Fluid Dyn. 5(7) (2005), pp. 414–419.CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Gutheil, E. and Sirignano, W. A., Counterflow Spray Combustion Modeling with Detailed Transport and Detailed Chemistry, Combust. Flame 113 (1998), pp. 92–105.CrossRefGoogle Scholar
  15. 15.
    Gutheil, E., Williams, F. A., A Numerical and Asymptotic Investigation of Structures of Hydrogen-Air Diffusion Flames at Pressures and Temperatures of High-Speed Combustion, Prog. Combust. Inst. 23 (1990), pp. 513–521.Google Scholar
  16. 16.
    Hasse, C. and Peters, N., A two mixture fraction flamelet model applied to split injections in a DI Diesel engine, Proc. Combust. Inst. 30 (2005), pp. 2755–2762.CrossRefGoogle Scholar
  17. 17.
    Hollmann, C. and Gutheil, E., Flamelet-Modeling of Turbulent Spray Diffusion Flames Based on a Laminar Spray Flame Library, Combust. Sci. Tech. 135 (1998), pp. 175–192.CrossRefGoogle Scholar
  18. 18.
    Knudsen, E., Pitsch, H., A general flamelet transformation useful for distinguishing between premixed and non-premixed modes of combustion, Combust. Flame 156 (2009), pp. 678–696.CrossRefGoogle Scholar
  19. 19.
    Li, S. C., Libby, P. A. and Williams, F. A. Experimental and theoretical studies of counterflow spray diffusion flames, Proc. Combust. Inst. 24 (1992), pp. 1503–1512.CrossRefGoogle Scholar
  20. 20.
    Li, S. C., Spray Stagnation Flames, Prog. Energy Combust. Sci. 23 (1997), pp. 303–347.CrossRefGoogle Scholar
  21. 21.
    Massot, M., Kumar, M., Smooke, M. D. and Gomez, A., Spray counterflow diffusion flames of heptane: Experiments and computations with detailed kinetics and transport, Proc. Combust. Inst. 27 (1998), pp. 1975–1983.CrossRefGoogle Scholar
  22. 22.
    Nguyen, P., Vervish, L., Subramanian, V. Domingo, P. Multidimensional flamelet-generated manifolds for partially premixed combustion, Combust. Flame 127 (2010), pp. 43–61.CrossRefGoogle Scholar
  23. 23.
    Olguin, H., Gutheil, E., Influence of evaporation on spray flamelet structures, Combust. Flame (2013), http://dx.doi.org/10.1016/j.combustflame.2013.10.010.
  24. 24.
    Peters, N., Laminar diffusion flamelet models in non-premixed turbulent combustion, Prog. Energy Combust. Sci. 10 (1984), pp. 319–339.CrossRefGoogle Scholar
  25. 25.
    Pitsch, H., Peters, N., A consistent flamelet formulation for non-premixed combustion considering differential diffusion effects, Combust. Flame 114 (1998), pp. 26–40.CrossRefGoogle Scholar
  26. 26.
    van Oijen, J. A., Lammers, F. A., de Goey, L. P. H., Modeling of complex premixed burner systems by using flamelet-generated manifolds, Combust. Flame 127 (2001), pp. 2124–2134.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Interdisciplinary Center for Scientific ComputingUniversity of HeidelbergHeidelbergGermany

Personalised recommendations