Advertisement

A Comparative Study of the Simulation of Turbulent Ethanol Spray Flames

  • Colin R. HeyeEmail author
  • Agisilaos Kourmatzis
  • Venkat Raman
  • Assaad R. Masri
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 19)

Abstract

Experimental data for a series of spray flames is utilized to perform analysis of validation studies conducted by multiple contributors. In this multiphase context, various choices for boundary conditions as well as modeling frameworks and formulations are evaluated. Both large eddy simulation (LES) and Reynolds-averaged Navier-Stokes (RANS) approaches showed the ability to capture droplet evolution with regards to mean and fluctuating velocities. This accuracy is contingent on the proper specification of both droplet and gas phase velocities at the jet exit. The combined effect of combustion and evaporation model choices impacts the downstream volume flux of droplets and resulting gas phase temperature. Further investigation is required to isolate individual model effects for high-temperature spray-laden environments. Proposed solutions involve the simulation of a wider array of flow conditions or lowerlevel experiments to remove the effects of model coupling.

Keywords

Large Eddy Simulation Nozzle Exit Flame Front Droplet Diameter Flame Spread 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    B. Abramzon, W. Sirignano, Droplet vaporization model for spray combustion calculations, International Journal of Heat and Mass Transfer 32 (9) (1989) 1605–1618.Google Scholar
  2. 2.
    K. Akselvoll, P. Moin, Large eddy simulation of turbulent confined coannular jets, Journal of Fluid Mechanics 315 (1996) 387–411.Google Scholar
  3. 3.
    R. J. M. Bastiaans, J. A. van Oijen, L. P. H. de Goey, Application of flamelet-generated manifolds and flamelet analysis of turbulent combustion, International Journal for Multiscale Computational Engineering 4 (3) (2006) 307–317.Google Scholar
  4. 4.
    Chemical-Kinetic Mechanisms for Combustion Applications, San Diego Mechanism web page, Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego (http://combustion.ucsd.edu). (2011).
  5. 5.
    Y. Chen, S. Starner, A. Masri, A detailed experimental investigation of well-defined, turbulent evaporating spray jets of acetone, International Journal of Multiphase Flow 32 (2006) 389–412.CrossRefzbMATHGoogle Scholar
  6. 6.
    M. Chrigui, A. Masri, A. Sadiki, J. Janicka, Large eddy simulation of a polydisperse ethanol spray flame, Flow, Turbulence and Combustion (2013) 1–20.Google Scholar
  7. 7.
    O. Desjardins, G. Blanquart, G. Balarac, H. Pitsch, High order conservative finite difference scheme for variable density low Mach number turbulent flows, Journal of Computational Physics 227 (15) (2008) 7125–7159.Google Scholar
  8. 8.
    J. K. Dukowicz, A particle-fluid numerical model for liquid sprays, Journal of Computational Physics 35 (1980) 229–253.CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Eleventh International Workshop on Measurement and Computation of Turbulent Non-premixed Flames, Darmstadt, Germany, 2011. URL http://www.sandia.gov/TNF/11thWorkshop/TNF11.html
  10. 10.
    M. Gorokhovski, M. Herrmann, Modeling primary atomization, Annual Review of Fluid Mechanics 40 (2008) 343–366.CrossRefMathSciNetGoogle Scholar
  11. 11.
    J. D. Gounder, A. Kourmatzis, A. R. Masri, Turbulent piloted dilute spray flames: Flow fields and droplet dynamics, Combustion and Flame 159 (11) (2012) 3372–3397.Google Scholar
  12. 12.
    N. Hakimi, Preconditioning methods for time dependent navier-stokes equations, Ph.D. thesis, Vrije Universiteit Brussels, Brussels, Belgium (1997).Google Scholar
  13. 13.
    M. Herrmann, G. Blanquart, V. Raman, A bounded quick scheme for preserving scalar bounds in large-eddy simulations, AIAA Journal 44 (12) (2006) 2879–2880.Google Scholar
  14. 14.
    C. R. Heye, V. Raman, A. R. Masri, LES/probability density function approach for the simulation of an ethanol spray flame, Proceedings Of The Combustion Institute 34 (Part 1) (2013) 1633–1641.Google Scholar
  15. 15.
    W. P. Jones, F. di Mare, A. J. Marquis, LES-BOFFIN: Users Guide, Tech. Rep., Imperial College London (2002).Google Scholar
  16. 16.
    W. P. Jones, S. Navarro-Martinez, Large eddy simulation of autoignition with a subgrid probability density function method, Combustion and Flame 150 (3) (2007) 170–187.Google Scholar
  17. 17.
    W. P. Jones, S. Lyra, S. Navarro-Martinez, Numerical investigation of swirling kerosene spray flames using Large Eddy Simulation, Combustion and Flame 159 (4) (2012) 1539–1561.Google Scholar
  18. 18.
    W. P. Jones, A. J. Marquis, V. N. Prasad, LES of a turbulent premixed swirl burner using the Eulerian stochastic field method, Combustion and Flame 159 (10) (2012) 3079–3095.Google Scholar
  19. 19.
    A. A. Konnov, R. J. Meuwissen, L. P. H. de Goey, The temperature dependence of the laminar burning velocity of ethanol flames, Proceedings of the Combustion Institute 33 (Part 1) (2011) 1011–1019.Google Scholar
  20. 20.
    T. Lehnhauser, M. Schafer, Improved linear interpolation practice for finite-volume schemes on complex grids, International Journal for Numerical Methods in Fluids 38 (7) (2002) 625–645.Google Scholar
  21. 21.
    L. di Mare, M. Klein, W. Jones, J. Janicka, Synthetic turbulence inflow conditions for large-eddy simulation, Physics of Fluids 18 (2).Google Scholar
  22. 22.
    N. Marinov, A detailed chemical kinetic model for high temperature ethanol oxidation, International Journal of Chemical Kinetics 31 (3) (1999) 183–220.Google Scholar
  23. 23.
    A. R. Masri, J. D. Gounder, Turbulent Spray Flames of Acetone and Ethanol Approaching Extinction, Combustion Science and Technology 182 (4–6) (2010) 702–715.Google Scholar
  24. 24.
    J.-P. Minier, E. Peirano, The PDF approach to turbulent polydispersed two-phase flows, Physics Reports 352 (2001) 1–214.CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    R. Miller, K. Harstad, J. Bellan, Evaluation of equilibrium and non-equilibrium evaporation models for many-droplet gas-liquid flow simulations, International Journal of Multiphase Flow 24 (6) (1998) 1025–1055.Google Scholar
  26. 26.
    P. Moin, K. Squires, W. Cabot, S. Lee, A dynamic subgrid-scale model for compressible turbulence and scalar transport, Physics of Fluids A 3 (1991) 2746–2757.CrossRefzbMATHGoogle Scholar
  27. 27.
    S. Nukiyama, Y. Tanasawa, Experiments on the atomization of liquids in an air stream, Transactions of the SME Japan 6 (1940) 5–7.Google Scholar
  28. 28.
    NUMECA International, Belgium, Theoretical Manual FINE/Open 212.3 (2013).Google Scholar
  29. 29.
    NUMECA International, Belgium, User Manual FINE/Open 212.3 (2013).Google Scholar
  30. 30.
    M. Okuyama, S. Hirano, Y. Ogami, H. Nakamura, Y. Ju, H. Kobayashi, Development of an Ethanol Reduced Kinetic Mechanism Based on the Quasi-Steady State Assumption and Feasibility Evaluation for Multi-Dimensional Flame Analysis, Journal of Thermal Science and Technology 5 (2) (2010) 189–199.Google Scholar
  31. 31.
    C. D. Pierce, Progress-variable approach for large-eddy simulation of turbulence combustion, Ph.D. thesis, Stanford University (2001).Google Scholar
  32. 32.
    C. D. Pierce, P. Moin, Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion, Journal of Fluid Mechanics 504 (2004) 73–97.CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    S. B. Pope, Explanation of Turbulent Round-Jet-Plane-Jet Anomaly, AIAA Journal 16 (3) (1978) 279–281.Google Scholar
  34. 34.
    J. Reveillon, L. Vervisch, Analysis of weakly turbulent dilute-spray flames and spray combustion regimes, Journal of Fluid Mechanics 537 (2005) 317–347.CrossRefzbMATHGoogle Scholar
  35. 35.
    A. Sadiki, M. Chrigui, J. Janicka, M. Maneshkarimi, Modeling and simulation of effects of turbulence on vaporization, mixing and combustion of liquid-fuel sprays, Flow Turbulence and Combustion 75 (1-4) (2005) 105-130, 2nd International Workshop on Trends in Numerical and Physical Modelling of Turbulent Processes in Gas Turbine Combustors and Automotive Engines, Univ Heidelberg, Heidelberg, GERMANY, APR 01-02, 2004.Google Scholar
  36. 36.
    W. A. Sirignano, Fluid dynamics of sprays - 1992 freeman scholar lecture, Journal of Fluids Engineering 115 (1993) 345–378.Google Scholar
  37. 37.
    S. Starner, J. Gounder, A. Masri, Effects of turbulence and carrier fluid on simple, turbulent spray jet flames, Combustion and Flame 143 (4) (2005) 420–432.Google Scholar
  38. 38.
    S. Subramaniam, Lagrangian-Eulerian methods for multiphase flows, Progress in Energy and Combustion Science 39 (2-3) (2013) 215–245.Google Scholar
  39. 39.
    L. Valino, A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow, Flow Turbulence and Combustion 60 (2) (1998) 157–172.Google Scholar
  40. 40.
    B. Wegner, A. Maltsev, C. Schneider, A. Sadiki, A. Dreizler, J. Janicka, Assessment of unsteady RANS in predicting swirl flow instability based on LES and experiments, International Journal of Heat and Fluid Flow 25 (3, SI) (2004) 528–536, 3rd International Symposium on Turbulence and Shear Flow Phenomena (TSFP-3), Sendai, JAPAN, JUN 25–27, 2003.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Colin R. Heye
    • 1
    Email author
  • Agisilaos Kourmatzis
    • 2
  • Venkat Raman
    • 1
  • Assaad R. Masri
    • 2
  1. 1.Department of Aerospace Engineering and Engineering MechanicsThe University of Texas at AustinAustinUSA
  2. 2.School of Aerospace, Mechanical and Mechatronic EngineeringThe University of SydneyDarlingtonAustralia

Personalised recommendations