Advertisement

K-Sense: Towards a Kinematic Approach for Measuring Human Energy Expenditure

  • Kazi I. Zaman
  • Anthony White
  • Sami R. Yli-Piipari
  • Timothy W. Hnat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8354)

Abstract

Accurate energy expenditure monitoring will be an essential part of medical diagnosis in the future, enabling individually-tailored just-in-time interventions. However, there are currently no real-time monitors that are practical for continuous daily use. In this paper, we introduce the K-Sense energy expenditure monitor that uses inertial measurement units (IMUs) mounted to an individual’s wrist and ankle with elastic bands to determine angular velocity and position. The system utilizes kinematics to determine the amount of energy required for each limb to achieve its current movement. Our empirical evaluation includes over 3,000,000 individual data samples across 12 individuals and the results indicate that the system can estimate total energy expenditure with a 92 percent accuracy on average.

Keywords

Body Sensor Network Energy Expenditure Kinematics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Actigraph, http://www.actigraphcorp.com/ (accessed September 4, 2013)
  2. 2.
    Actilife 6 official site, http://www.actigraphcorp.com/products/actilife-6/ (accessed September 4, 2013)
  3. 3.
    Activity monitor, http://research.nokia.com/page/529 (accessed September 4, 2013)
  4. 4.
    Fitbit official site, http://www.fitbit.com/ (accessed September 4, 2013)
  5. 5.
    Fones,energy consumption and body weight, http://www.bwl.admin.ch/themen/00509/00528/index.html?lang=en [Federal Department of Economic Affairs and Education and Research EAER] (accessed September 4, 2013)
  6. 6.
    Nike+, http://nikeplus.nike.com/nikeplus/ (accessed September 4, 2013)
  7. 7.
    Sports tracker, http://www.sports-tracker.com/ (accessed September 4, 2013)
  8. 8.
    Andre, D., Pelletier, R., Farringdon, J., Safi, S., Talbott, W., Stone, R., Vyas, N., Trimble, J., Wolf, D., Vishnubhatla, S., Boehmke, S., Teller, J.S.A.: The development of the sensewear armband, a revolutionary energy assessment device to assess physical activity and lifestyle. Bodymedia (2006)Google Scholar
  9. 9.
    Bradfield, R.B., Huntzicker, P.B., Fruehan, G.J.: Simultaneous comparison of respirometer and heart-rate telemetry techniques as measures of human energy expenditure. American Journal of Clinical Nutrition 22(6), 696–700 (1969)Google Scholar
  10. 10.
    Brage, S., Brage, N.: Branched equation modeling of simultaneous accelerometry and heart rate monitoring improves estimate of directly measured physical activity energy expenditure. Journal of Applied Phyliology 96, 343–351 (2004)Google Scholar
  11. 11.
    Choi, J.E., Lee, J., Hwang, H., Kim, J.P., Park, J.C., Shin, K.: Estimation of activity energy expenditure: Accelerometer approach. In: IEEE-EMBS Engineering in Medicine and Biology Society, pp. 3830–3833 (2005)Google Scholar
  12. 12.
    Church, T.S., Earnest, C.P., Skinner, J.S., Blair, S.N.: Effects of different doses of physical activity on cardiorespiratory fitness among sedentary, overweight or obese postmenopausal women with elevated blood pressure: A randomized controlled trial. JAMA 297(19), 2081–2091 (2007)CrossRefGoogle Scholar
  13. 13.
    Consolvo, S., McDonald, D.W., Toscos, T., Chen, M.Y., Froehlich, J., Harrison, B., Klasnja, P., LaMarca, A., LeGrand, L., Libby, R., Smith, I., Landay, J.A.: Activity sensing in the wild: A field trial of ubifit garden. In: SIGCHI Conference on Human Factors in Computing Systems, pp. 1797–1806. ACM (2008)Google Scholar
  14. 14.
    Crouter, S.E., Clowers, K.G., Bassett, J.D.R.: A novel method for using accelerometer data to predict energy expenditure. Journal of Applied Physiology 100, 1324–1331 (2006)CrossRefGoogle Scholar
  15. 15.
    Schoeller, D.A., Taylor, P.B.: Precision of the doubly labelled water method using the two-point calculation. Human Nutrition: Clinical Nutrition 41(3), 215–223 (1987)Google Scholar
  16. 16.
    Dannecker, K.L., Sazonova, N.A., Melanson, E.L., Sazonov, E.S., Browning, R.C.: A comparison of energy expenditure estimation of several physical activity monitors. Medicine and Science in Sports and Exercise (2013)Google Scholar
  17. 17.
    de Groot, G., Schreurs, A.W., Schenau, G.V.I.: A portable lightweight douglas bag instrument for use during various types of exercise. International Journal of Sports Medicine 4(2), 132–134 (1983)CrossRefGoogle Scholar
  18. 18.
    de Leva, P.: Adjustments to zatsiorsky-seluyanov’s segment inertia parameters. Journal of Biomechanics 29(9), 1223–1230 (1996)CrossRefGoogle Scholar
  19. 19.
    Finkelstein, E.A., Trogdon, J.G., Cohen, J.W., Dietz, W.: Annual medical spending attributable to obesity: payer-and service-specific estimates. Health Affairs 28(5), w822–w831 (2009)Google Scholar
  20. 20.
    National Center for Health Statistics. Health, united states, 2012: With special feature on emergency care (2013)Google Scholar
  21. 21.
    Hollanda, P.W., Welsch, R.E.: Robust regression using iteratively reweighted least-squares. Communications in Statistics - Theory and Methods 6(9), 813–827 (1977)CrossRefGoogle Scholar
  22. 22.
    Jensen, K., Jorgensen, S., Johansen, L.: A metabolic cart for measurement of oxygen uptake during human exercise using inspiratory flow rate. European Journal of Applied Physiology (2002)Google Scholar
  23. 23.
    Johannsen, D.L., Calabro, M.A., Stewart, J., Franke, W., Rood, J.C., Welk, G.J.: Accuracy of armband monitors for measuring daily energy expenditure in healthy adults. Medicine and Science in Sports and Exercise 42(11), 2134–2140 (2010)CrossRefGoogle Scholar
  24. 24.
    Madgwick, S.: An efficient orientation filter for inertial and inertial/magnetic sensor arrays. Technical report Department of Mechanical Engineering University of Bristol (April 2010)Google Scholar
  25. 25.
    McDowd, K.B.: Life is a sport:how the nike+ fuelband gets it right and represents the evolution of design for wearablesGoogle Scholar
  26. 26.
    Plagenhoef, S., Evans, F.G., Abdelnour, T.: Anatomical data for analyzing human motion. Research Quarterly for Exercise and Sport 54, 169–178 (1983)CrossRefGoogle Scholar
  27. 27.
    Plasqui, G., Joosen, A.M., Kester, A.D., Goris, A.H., Westerterp, K.R.: Measuring free-living energy expenditure and physical activity with triaxial accelerometry. Obesity Research 13(8) (August 2005)Google Scholar
  28. 28.
    Rennie, K., Rowsell, T., Jebb, S.A., Holburn, D., Wareham, N.J.: A combined heart rate and movement sensor: proof of concept and preliminary testing study. European Journal of Clinical Nutrition 54, 409–414 (2000)CrossRefGoogle Scholar
  29. 29.
    Seliger, V., Dolejs, L., Karas, V.: A dynamometric comparison of maximum eccentric, concentric, and isometric contractions using emg and energy expenditure measurements. European Journal of Applied Physiology and Occupational Physiology 1980 45(23), 235–244 (1980)CrossRefGoogle Scholar
  30. 30.
    Shahabdeen, J.A., Baxi, A., Nachman, L.: Ambulatory energy expenditure estimation:a machine learning approach. In: Proceedings of the Twenty-Second Innovative Applications of Artificial Intelligence Conference (2010)Google Scholar
  31. 31.
    Snellen, J.: An improved estimation of mean body temperature using combined direct calorimetry and thermometry. European Journal of Applied Physiology 2000 82(3), 188–196 (2000)Google Scholar
  32. 32.
    Sun, M., Reed, G.W., Hill, J.O.: Modification of a whole room indirect calorimeter for measurement of rapid changes in energy expenditure. Journal of Applied Physiology 76(6) (June 1994)Google Scholar
  33. 33.
    Watt, A., Watt, M.: Advanced Animation and Rendering Techniques: Theory and Practice. Addison-Wesley (1992)Google Scholar
  34. 34.
    Webster, J., Welsh, G., Pacy, P., Garrow, J.: Description of a human direct calorimeter, with a note on the energy cost of clerical work. British Journal of Nutrition 1986 55(1), 1–6 (1986)Google Scholar
  35. 35.
    Wyss, T., Mäder, U.: Energy expenditure estimation during daily military routine with body-fixed sensors. Military Medicine 176(5), 494 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Kazi I. Zaman
    • 1
  • Anthony White
    • 1
  • Sami R. Yli-Piipari
    • 1
  • Timothy W. Hnat
    • 1
  1. 1.University of MemphisMemphisUSA

Personalised recommendations