Application of a Rule-Based Decision Support System for Improving Energy Efficiency of Passive Temperature-Controlled Transports

  • Hans-Dietrich Haasis
  • Hendrik Wildebrand
  • Andreas Barz
  • Guido Kille
  • Anna Kolmykova
  • Lydia Schwarz
  • Axel Wunsch
Chapter
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 262)

Abstract

A significant proportion of the flow of goods is transported and handled temperature-controlled. Some of these transports are carried out with an active temperature control, while other goods are transported within the scope of a passive temperature control. The project SMITH focuses the issue of passive temperature control using the example of an aluminium producer in Germany which organizes transports of liquid aluminium. The liquid aluminium and the corresponding crucibles need to be heated in a way, which guarantees the customer a delivery in a proper processing temperature. Setting the temperature is currently based on experience. The aim of SMITH is to improve the energy efficiency of passive temperature-controlled logistics. The software predicts the optimum temperature based on factors such as weather conditions. A transfer of the solution to other temperature-controlled transports enables huge energy and CO2 savings and is an important contribution of the logistics industry to climate protection.

Keywords

Passive temperature-controlled transport Expert system Decision tree Fuzzy logic Rule based 

Notes

Acknowledgments

This work was funded by the Federal Ministry of Education and Research (BMBF) under the reference number 01LY1104 “SMITH—Improving energy efficiency of passive temperature-controlled transports”.

References

  1. 1.
    Baehr, H.D., Stephan, K.: Wärme- und Stoffübertragung. Springer, Heidelberg (2006)Google Scholar
  2. 2.
    Bergrath, J.: Heiße Ware—Werkstofftransport: Flüssig-Aluminium. Lastauto Omnibus—Test Technik Trends 82(11), 76–78 (2005)Google Scholar
  3. 3.
    Cingolani, P.: Open source fuzzy logic library and FCL language implementation. http://jfuzzylogic.sourceforge.net (2012)
  4. 4.
    Feil, D.: Sichere verpackung für sensible Güter. MM Logistik 5, 44–45 (2011)Google Scholar
  5. 5.
    Hoenerloh, A.: Unscharfe Simulation in der Betriebswirtschaft: Modellbildung und Simulation auf der Basis der Fuzzy Set-Theorie. Unitext, Goettingen (1997)Google Scholar
  6. 6.
    Lange, V., Hasselmann, G.: Temperaturgeführte transporte. In: Arnold, D., et al. (ed.) Handbuch Logistik, pp. 570–580. Springer, Berlin (2008)Google Scholar
  7. 7.
    Nikolopoulos, C.: Expert Systems: Introduction to First and Second Generation and Hybrid Knowledge Based Systems. Marcel Dekker, New York (1997)Google Scholar
  8. 8.
    Paetz, J.: Soft Computing in der Bioinformatik: Eine Grundlegende Einführung und Übersicht. Springer, Heidelberg (2006)Google Scholar
  9. 9.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Kaufmann, San Mateo (1993)Google Scholar
  10. 10.
    Roskoss, A.: Temperature-Controlled Packaging Systems—Active or Passive? http://www.iptonline.com/articles/public/Intelsius.pdf. (2011)
  11. 11.
    Shah Hamzei, G.H., Mulvaney, D.J.: Implementation of an intelligent control system using fuzzy ITI. Neural Comput. Appl. 9(1), 12–18 (2000)Google Scholar
  12. 12.
    Sibbel, R.: Fuzzy-Logik in der Fertigungssteuerung am Beispiel der retrograden Terminierung. Lit Verlag, Muenster (1998)Google Scholar
  13. 13.
    Spreckelsen, C., Spitzer, K.: Wissensbasen und Expertensysteme in der Medizin: KI-Ansätze zwischen klinischer Entscheidungsunterstützung und medizinischem Wissensmanagement. Vieweg und Teubner, Wiesbaden (2008)Google Scholar
  14. 14.
    Truszkiewitz, G., Vogel, S.: Spezielle logistikprozesse—temperaturgeführte logistik. In: Arnold, D., et al. (ed.) Handbuch Logistik, pp. B7-34–B7-46. Springer, Berlin (2004)Google Scholar
  15. 15.
    Zimmermann, H.-J., Angstenberger, J.: Fuzzy Technologien: Prinzipien, Werkzeuge Potenziale. VDI Verlag, Duesseldorf (1993)CrossRefGoogle Scholar
  16. 16.
    Zimmermann, H.-J.: Fuzzy Set Theory and Its Applications. Kluwer Academic Publishers, Boston (1996)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Hans-Dietrich Haasis
    • 1
  • Hendrik Wildebrand
    • 2
  • Andreas Barz
    • 1
  • Guido Kille
    • 1
  • Anna Kolmykova
    • 1
  • Lydia Schwarz
    • 1
  • Axel Wunsch
    • 1
  1. 1.Institute of Shipping Economics and LogisticsBremenGermany
  2. 2.Berlin School of Economics and LawBerlinGermany

Personalised recommendations