Advertisement

Introduction

  • Delio Mugnolo
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

Electric phenomena have been known for centuries. When natural scientists began to investigate them more closely in the eighteenth century, it soon became clear that electric properties can be investigated by mathematical methods.

References

  1. 1.
    S. Alexander, Superconductivity of networks. A percolation approach to the effects of disorder. Phys. Rev. B 27, 1541–1557 (1983)Google Scholar
  2. 2.
    A. Beurling, J. Deny, Dirichlet spaces. Proc. Natl. Acad. Sci. USA 45, 208–215 (1959)CrossRefzbMATHMathSciNetADSGoogle Scholar
  3. 3.
    A. Beurling, J. Deny, Espaces de Dirichlet. I: Le cas élémentaire. Acta Math. 99, 203–224 (1959)MathSciNetGoogle Scholar
  4. 4.
    G. Boole, A Treatise on the Calculus of Finite Differences (Macmillan, Cambridge, 1860)Google Scholar
  5. 5.
    R.L. Brooks, C.A.B. Smith, A.H. Stone, W.T. Tutte, The dissection of rectangles into squares. Duke Math. J. 7, 312–340 (1940)CrossRefMathSciNetGoogle Scholar
  6. 6.
    G. Chen, M.C. Delfour, A.M. Krall, G. Payre, Modeling, stabilization and control of serially connected beams. SIAM J. Control Opt. 25, 526–546 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    F. Conrad, Stabilization of beams by pointwise feedback control. SIAM J. Control Opt. 28, 423–437 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    C.A. Coulson, Note on the applicability of the free-electron network model to metals. Proc. Phys. Soc. Sect. A 67, 608 (1954)CrossRefzbMATHADSGoogle Scholar
  9. 9.
    R.J. Duffin, Nonlinear networks. iia. Bull. Am. Math. Soc. 53, 963–971 (1947)Google Scholar
  10. 10.
    R.J. Duffin, Discrete potential theory. Duke Math. J. 20, 233–251 (1953)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    L. Euler, Solutio problematis ad geometriam situs pertinentis. Comm. Acad. Scient. Petropol. 8, 128–140 (1741)Google Scholar
  12. 12.
    P. Exner, P. Šeba, Free quantum motion on a branching graph. Rep. Math. Phys. 28, 7–26 (1989)CrossRefzbMATHMathSciNetADSGoogle Scholar
  13. 13.
    S. Günzel (ed.), Raumwissenschaften. (Suhrkamp, Frankfurt am Main, 2008)Google Scholar
  14. 14.
    D.O. Hebb, The Organization of Behaviour. (Wiley, New York, 1949)Google Scholar
  15. 15.
    E. Hille, Notes on linear transformations. II: Analyticity of semi-groups. Ann. Math. 40, 1–47 (1939)MathSciNetGoogle Scholar
  16. 16.
    E. Hückel, Quantentheoretische Beiträge zum Benzolproblem. Z. Physik A 70, 204–286 (1931)CrossRefzbMATHADSGoogle Scholar
  17. 17.
    M. Itô, A note on extended regular functional spaces. Proc. Japan Acad. 43, 435–440 (1967)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    D. Kőnig, Theorie der endlichen und unendlichen Graphen (Teubner, Leipzig, 1936)Google Scholar
  19. 19.
    G. Kirchhoff, Ueber den Durchgang eines elektrischen Stromes durch eine Ebene, insbesondere durch eine kreisförmige. Ann. Physik 140, 497–514 (1845)CrossRefADSGoogle Scholar
  20. 20.
    G. Kirchhoff, Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird. Ann. Physik 148, 497–508 (1847)CrossRefADSGoogle Scholar
  21. 21.
    G. Kirchhoff, On the solution of the equations obtained from the investigation of the linear distribution of Galvanic currents. IRE Trans. Circuit Theory 5, 4–7 (1958)CrossRefGoogle Scholar
  22. 22.
    G. Kron, Electric circuit models of the Schrödinger equation. Phys. Rev. 67, 39–43 (1945)CrossRefzbMATHMathSciNetADSGoogle Scholar
  23. 23.
    G. Leugering, E.J.P.G. Schmidt, On the control of networks of vibrating strings and beams, in IEEE Conference on Decision and Control (Proceedings 1989), pp. 2287–2290, IEEE, Providence, 1989Google Scholar
  24. 24.
    G. Lumer, Connecting of local operators and evolution equations on networks, in Potential Theory (Proc. Copenhagen 1979), ed. by F. Hirsch (Springer, Berlin, 1980), pp. 230–243Google Scholar
  25. 25.
    R. MacArthur, Fluctuations of animal populations and a measure of community stability. Ecology 36, 533–536 (1955)CrossRefGoogle Scholar
  26. 26.
    C.St.J.A. Nash-Williams, Random walk and electric currents in networks. Math. Proc. Cambridge Phil. Soc. 55, 181–194 (1959)Google Scholar
  27. 27.
    C.St.J.A. Nash-Williams, Unexplored and semi-explored territories in graph theory, in New Directions in the Theory of Graphs (Proc. Ann Arbor 1971) (Academic Press, New York, 1973), pp. 149–186Google Scholar
  28. 28.
    L. Onsager, Crystal statistics, I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117–149 (1944)zbMATHMathSciNetGoogle Scholar
  29. 29.
    L. Pauling, The diamagnetic anisotropy of aromatic molecules. J. Chem. Phys. 4, 673–677 (1936)CrossRefADSGoogle Scholar
  30. 30.
    G. Polya, Über eine Aufgabe betreffend die Irrfahrt im Strassennetz. Math. Annalen 84, 149–160 (1921)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    W. Quade, Matrizenrechnung und elektrische Netze. Arch. Elektrotechnik 34, 545–567 (1940)CrossRefMathSciNetGoogle Scholar
  32. 32.
    W. Rall, Branching dendritic trees and motoneurone membrane resistivity. Exp. Neurol. 1, 491–527 (1959)CrossRefGoogle Scholar
  33. 33.
    N. Rashevsky, Outline of a mathematical theory of human relations. Philos. Sci. 2, 413–430 (1935)CrossRefGoogle Scholar
  34. 34.
    K. Ruedenberg, C.W. Scherr, Free-electron network model for conjugated systems. I. Theory. J. Chem. Phys. 21, 1565–1581 (1953)CrossRefADSGoogle Scholar
  35. 35.
    J.J. Sylvester, Chemistry and algebra. Nature 17, 284 (1878)Google Scholar
  36. 36.
    H. Watanabe, Spectral dimension of a wire network. J. Phys. A 18, 2807–2823 (1985)CrossRefzbMATHMathSciNetADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Delio Mugnolo
    • 1
  1. 1.Universität Ulm Institut für AnalysisUlmGermany

Personalised recommendations