Performance Improvement of the Triple-Band Monopole Plain Antenna by the Grounding Surface Design with the Method of Particle Swarm Optimization

  • Ming-Chih Huang
  • Chien-Yuan Liu
  • Ming-Huei Chen
  • Sung-Te Lin
  • Hong-Hsin Huang
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 293)

Abstract

This article presents a research concerning the influence of the grounding surface for a triple-band G-shape monopole plane antenna based on a PSO algorithm. The PSO algorithm utilizes fewer computation and concise program code in comparison with a GA algorithm, and could solve the optimal grounding surface by added with weighting inertia. The design procedure and fabrication steps for an antenna are applied and simulated for triple-band wireless applications. The proposed PSO algorithm provides better precision, faster convergence, and shorter time for solving the global optimal solution.

Keywords

PSO Grounding surface Triple-band Micro-strip Antenna 

Notes

Acknowledgments

The authors greatly appreciate to the support of the National Science Council, R.O.C., under the Grant no. NSC 101-2632-E-230-001-NY3.

References

  1. 1.
    Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of IEEE International Conference on Neural Networks (vol. IV, pp. 1942–1948).Google Scholar
  2. 2.
    Shigenori, N., et al. (2003). A hybrid particle swarm optimization for distribution state estimation. IEEE Transaction on Power Systems, 18, 60–68.CrossRefGoogle Scholar
  3. 3.
    Salman, A., Ahmad, I., & Al-Madani, S. (2002). Particle swarm optimization for task assignment problem. Microprocessors and Microsystems, 26, 363–371.CrossRefGoogle Scholar
  4. 4.
    Kennedy, J., & Eberhart, R.C. (1997). A discrete binary version of the particle swarm algorithm. In Proceedings of IEEE International Conference on Systems, Man, and Cybernetics (pp. 4104–4108).Google Scholar
  5. 5.
    Parsopoulos, K. E., & Vrahatis, M. N. (2002). Recent approaches to global optimization problems through particle swarm optimization. Natural Computing, 1, 235–306.CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Clerc, M., & Kennedy, J. (2002). The particle swarm explosion, stability, and convergence in a multidimensional complex space. IEEE Transaction on Evolutionary Computation, 6, 58–73.CrossRefGoogle Scholar
  7. 7.
    Hu, X., Shi, Y., & Eberhart, R. C. (2004). Recent advances in particle swarm. In Proceedings of IEEE Congress on Evolutionary Computation 2004 (CEC 2004) (pp. 90–97).Google Scholar
  8. 8.
    Eberhart, R. C., & Shi, Y. (2001). Particle swarm optimization: developments, application and resources. In Proceedings of the 2001 Congress on Evolutionary Computation, Seoul, South Korea (vol. 1, pp. 81–86).Google Scholar
  9. 9.
    Wu, C. M., Chiu C. N., & Hsu, C. K. (2006). A new non-uniform meandered and fork-type grounded antenna for triple-band WLAN applications. IEEE Antennas Wireless Propagation Letters, 5(1), 346–348.Google Scholar
  10. 10.
    Lee, Y., & Seo, Y. M. (2009). Triple-band CPW-fed compact monopole antennas for GSM/PCS/DCS/WCDMA applications. Electronic Letters, 45(9), 447–448.Google Scholar
  11. 11.
    Pan, C. Y., et al. (2007). Dual wideband printed monopole antenna for WLAN/WiMAX applications. IEEE Antennas Propagation Letters, 6, 149–151.CrossRefGoogle Scholar
  12. 12.
    Kuo, Y. L., Cheng, Y. T., & Wong, K. L. (2002). Printed inverted-F antennas for applications in wireless communication. In Proceedings of IEEE AP-S International Symposium (vol. 3, pp. 454–457).Google Scholar
  13. 13.
    Chen, I., & Peng, C. M. (2003). Microstrip-fed dual-U-shaped printed monopole antenna for dual-band wireless communication applications. Electronics Letters, 39(13), 955–956.Google Scholar
  14. 14.
    Kuo, Y. L., & Wong, K. L. (2003). Printed double-T monopole antenna for 2.4/5.2 GHz dual-band WLAN operations. IEEE Transaction on Antennas and Propagation, 51(9), 2187–2192.Google Scholar
  15. 15.
    Jan J. Y., & Su, J. W. (2005). Bandwidth enhancement of a printed wide-slot antenna with a rotated slot. IEEE Transaction on Antennas and Propagation, 53(6), 2111–2114.Google Scholar
  16. 16.
    Pan, C. Y., Huang, C. H., & Horng, T. S. (2004). A novel printed monopole antenna with a square conductor-backed parasitic plane for dual-band WLAN applications. In Proceedings of IEEE AP-S International Symposium (vol. 1, pp. 261–264).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ming-Chih Huang
    • 1
  • Chien-Yuan Liu
    • 2
  • Ming-Huei Chen
    • 3
  • Sung-Te Lin
    • 3
  • Hong-Hsin Huang
    • 4
  1. 1.Department of Electrical EngineeringYung Ta Institute of Technology and CommercePingtung CountyTaiwan, Republic of China
  2. 2.Department of Computer Science and Information EngineeringCheng Shiu UniversityKaohsiungTaiwan, Republic of China
  3. 3.Department of Electronic EngineeringNational Kaohsiung First University of Science and TechnologyKaohsiungTaiwan, Republic of China
  4. 4.Department of Electrical EngineeringCheng Shiu UniversityKaohsiungTaiwan, Republic of China

Personalised recommendations