Decentralized Adaptive Control of Euler–Lagrange Mechanical System

  • Cheng-Fa Cheng
  • Tse-Han Chen
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 293)


The problem of decentralized control Euler–Lagrange like mechanical systems with high-order interconnections is investigated in this paper. A new decentralized adaptation scheme is proposed to estimate the unknown structure bounds. Then, a decentralized adaptive controller is constructed to guarantee the uniformly ultimate boundedness of the system and the exponential convergence of the tracking error. Finally, a numerical example is given to demonstrate the validity of the results.


Euler–Lagrange equations Decentralized control Adaptive Uniformly ultimate 


  1. 1.
    Ugrinovskii, V. A., & Pota, H. R. (2005). Decentralized control of power systems via robust control of uncertain markov jump parameter systems. International Journal of Control, 78, 662–677.CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Li, L., Ugrinovskii, V. A., & Orsi, R. (2007). Decentralized robust control of uncertain markov jump parameter systems via output feedback. Automatica, 43, 1932–1944.CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Baric, M., & Borrelli, F. (2012). Decentralized robust control invariance for a network of storage devices. IEEE Transactions on Automatic Control, 57, 1018–1024.CrossRefMathSciNetGoogle Scholar
  4. 4.
    Ioannou, P. A., & Fidan, B. (2006). Adaptive control tutorial. Philadelphia, PA: SIAM Book Series on Advances in Design and Control.CrossRefMATHGoogle Scholar
  5. 5.
    Narendra, K. S., & Han, Z. (2011). The changing face of adaptive control: the use of multiple models. Annual Reviews in Control, 35, 1–12.CrossRefGoogle Scholar
  6. 6.
    Yan, R., Dong, Z. Y., Saha, T., & Majumder, R. (2010). A power system nonlinear adaptive decentralized controller design. Automatica., 46, 330–336.CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Tan, K. K., Huang, S., & Lee, T. H. (2009). Decentralized adaptive controller design of large-scale uncertain robotic systems. Automatica., 45, 161–166.CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Yang, Z. J., Fukushima, Y., & Qin, P. (2012). Decentralized adaptive robust control of robot manipulators using disturbance observers. IEEE Transactions on Control Systems Technology, 20, 1357–1365.CrossRefGoogle Scholar
  9. 9.
    Tang, Y., Tomizuka, M., Guerrero, G., & Montemayor, G. (2000). Decentralized robust control of mechanical systems. IEEE Transactions on Automatic Control, 45, 771–776.Google Scholar
  10. 10.
    Ioannou, P. (1986). Decentralized adaptive control for interconnected systems. IEEE Transactions on Automatic Control, 31, 291–298.CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Gong, Z., Wen, C., & Mital, D. P. (1996). Decentralized robust controller design for a class of interconnected uncertain systems with unknown bound of uncertainty. IEEE Transactions on Automatic Control, 41, 850–854.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Communications, Navigation and Control EngineeringNational Taiwan Ocean UniversityKeelungTaiwan, Republic of China

Personalised recommendations