A Short Note on Derandomization of Perfect Target Set Selection

  • Yan-Liang Chen
  • Ching-Lueh Chang
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 293)


Consider the following process on a simple undirected connected graph \( {\text{G}}\left( {V,E} \right) \). At the beginning, only a set S of vertices are active. Subsequently, a vertex is activated if at least an \( \alpha \in \left( {0,1} \right) \) fraction of its neighbors are active. The process stops only when no more vertices can be activated. Following earlier papers, we call S an α perfect target set, abbreviated α-PTS, if all vertices are activated at the end. Chang [1] proposes a randomized polynomial-time algorithm for finding an α-PTS of expected size \( (2\sqrt 2 + 3)\left\lceil {\alpha |{\text{V}}|} \right\rceil \), where the expectation is taken over the random coin tosses of the algorithm. We note briefly that the method of conditional expectation can be used to derandomize Chang’s algorithm. So the derandomized algorithm finds an α-PTS of size no more than \( (2\sqrt 2 + 3)\left\lceil {\alpha |{\text{V}}|} \right\rceil \) given any simple undirected connected graph.


Target set selection Repetitive polling game Fault propagation Global cascade 



Ching-Lueh Chang is supported in part by the Ministry of Economic Affairs under grant 102-E0616 and the National Science Council under grant 101-2221-E-155-015-MY2.


  1. 1.
    Chang, C. -L. (2011). Triggering cascades on undirected connected graphs. Information Processing Letters, 11(19), 973–978.Google Scholar
  2. 2.
    Peleg, D. (2002). Local majorities, coalitions and monopolies in graphs: A review. Theoretical Computer Science, 282(2), 231–257.CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Flocchini, P., Geurts, F., & Santoro, N. (2001). Optimal irreversible dynamos in chordal rings. Discrete Applied Mathematics, 113(1), 23–42.CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Flocchini, P., Královic, R., Ruzicka, P., Roncato, A., & Santoro, N. (2003). On time versus size for monotone dynamic monopolies in regular topologies. Journal of Discrete Algorithms, 1(2), 129–150.CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Flocchini, P., Lodi, E., Luccio, F., Pagli, L., & Santoro, N. (2004). Dynamic monopolies in tori. Discrete Applied Mathematics, 137(2), 197–212.CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Adams, S. S., Troxell, D. S., & Zinnen, S. L. (2011). Dynamic monopolies and feedback vertex sets in hexagonal grids. Computers and Mathematics with Applications, 62(11), 4049–4057.CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Chang, C. -L., & Lyuu, Y. -D. (2010). Bounding the number of tolerable faults in majority-based systems. In Proceedings of the 7th International Conference on Algorithms and Complexity (pp. 109–119). Rome, Italy.Google Scholar
  8. 8.
    Ackerman, E., Ben-Zwi, O., & Wolfovitz, G. (2010). Combinatorial model and bounds for target set selection. Theoretical Computer Science, 411(44–46), 4017–4022.CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Khoshkhah, K., Soltani, H., & Zaker, M. (2012). On dynamic monopolies of graphs: The average and strict majority thresholds. Discrete Optimization, 9(2), 77–83.CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Chen, N. (2008). On the approximability of influence in social networks. In Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Mathematics (pp. 1029–1037).Google Scholar
  11. 11.
    Dreyer, P. A., & Roberts, F. S. (2009). Irreversible k-threshold processes: Graph-theoretical threshold models of the spread of disease and of opinion. Discrete Applied Mathematics, 157(7), 1615–1627.CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Kempe, D. Kleinberg, J, & Tardos, E. (2003). Maximizing the spread of influence through a social network. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 137–146).Google Scholar
  13. 13.
    Kralovic, R. (2001). On majority voting games in trees. In Proceedings of the 28th Conference on Current Trends in Theory and Practice of Informatics (pp. 282–291.Google Scholar
  14. 14.
    Gleeson, J. P., & Cahalane, D. J. (2002). Seed size strongly affects cascades on random networks. Physical Review E, 75(5), 056103.Google Scholar
  15. 15.
    Watts, D. J. (2002). A simple model of global cascades on random networks. Proceedings of the National Academy of Sciences 99(9), 5766–5771.Google Scholar
  16. 16.
    Berger, E. (2001). Dynamic monopolies of constant size. Journal of Combinatorial Theory Series B, 83(2), 191–200.CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Goles, E., & Olivos, J. (1980). Periodic behaviour of generalized threshold functions. Discrete Mathematics, 302, 187–189.CrossRefMathSciNetGoogle Scholar
  18. 18.
    Kleinberg, J. (2000). The small-world phenomenon: An algorithm perspective. In Proceedings of the 32nd Annual ACM Symposium on Theory of Computing (pp. 163–170.Google Scholar
  19. 19.
    Morris, S. (2000). Contagion. Review of Economic Studies, 67(1), 57–78.CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Peleg, D. (1998). Size bounds for dynamic monopolies. Discrete Applied Mathematics, 86(2–3), 263–273.CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Motwani, R., & Raghavan, P. (1995). Randomized algorithms. Cambridge: Cambridge University Press.CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Zen VoceHsinchu countyTaiwan, Republic of China
  2. 2.Department of Computer Science and EngineeringYuan-Ze UniversityTaoyuanTaiwan

Personalised recommendations