Modeling and Characterization of the Thermal Behavior of SiGe-HBTs

Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 293)

Abstract

In this paper, an accurate characterization method of the thermal impedance of silicon on insulator (SOI) technology silicon–germanium (SiGe) heterojunction bipolar transistors (HBTs) is proposed. The impact of electrical behavior and self-heating effects based on physical simulation and electrical characterization were analyzed in several different areas. Various aspects of the optimization of device performances are described. All the results of investigation are used for designing and optimizing Si/SiGe HBTs on SOI devices performance.

Keywords

Self-heating effects Silicon-on-insulator SiGe HBTs 

References

  1. 1.
    Cai, J., Ajmera, A., Ouyang, C., Oldiges, P., Steigerwalt, M., Stein, K., et al. (2002). Fully-depleted-collector polysilicon-emitter SiGe-base vertical bipolar transistor on SOI. In 2002 Symposium on VLSI Technology, Digest of Technical Papers (pp. 172–173).Google Scholar
  2. 2.
    Avenier, G., Schwartzmann, T., Chevalier, P., Vandelle, B., Rubaldo, L., Dutartre, D., et al. (2005). A self-aligned vertical HBT for thin SOI SiGe BiCMOS. In Proceedings of IEEE BCTM (pp. 128–131).Google Scholar
  3. 3.
    Chantre, A., Avenier, G., Chevalier, P., Vandelle, B., Saguin, F., Maneux, C., et al. (2006). SiGe HBT design for CMOS compatible SOI. In Proceedings of ISTDM (pp. 268–269).Google Scholar
  4. 4.
    Chevalier, P., Barbalat, B., Rubaldo, L., Vandelle, B., Dutartre, D., Bouillon, P., et al. (2005). 300 GHz fmax self-aligned SiGeC HBT optimized towards CMOS compatibility. In Proceedings of IEEE BCTM (pp. 120–123).Google Scholar
  5. 5.
    DESSIS-ISE (2004). ISE-TCAD Release 10.0, User's Manual, Zurich. Google Scholar
  6. 6.
    Ganci, P. R., Hajjir, J. -J. J., Humphrise, C. T. P., Lapham, J., & Buss, D. (1992). Self-heating in high-performance bipolar transistors on SOI substrates. In IEDM Technical Digest (pp. 417–420).Google Scholar
  7. 7.
    Mastrapasqua, M., Palestri, P., Pacelli, A., Celler, G. K., Frei, M. R., Smith, P. R., et al. (2002). Minimizing thermal resistance and collector-to-substrate capacitance in SiGe BiCMOS on SOI. IEEE Transactions on Electron Device Letters, 23, 145–147.Google Scholar
  8. 8.
    Vanhoucke, T., Boots, H. M. J., & Van Noot, W. D. (2004). Revised method for extraction of the thermal resistance applied to bulk and SOI SiGe HBTs. IEEE Electron Device Letters, 25, 150–152.CrossRefGoogle Scholar
  9. 9.
    Li, H., Ma, Z., Ma, P., & Racancelli, M. (2007). Thermal resistance of SiGe HBTs at high power densities. Semiconductor Science and Technology, 22, S68–S71.CrossRefGoogle Scholar
  10. 10.
    Nigrin, S., Armstrong, G. A., & Kranti, A. (2007). Optimisation of trench isolated bipolar transistors on SOI substrates by 3D electro-thermal simulations. Solid-State Electronics, 51, 1221–1228.CrossRefGoogle Scholar
  11. 11.
    Chantre, A., Avenier, G., Boissonnet, L., Borot, G., Bouillon, P., Brossard, F., et al. (2006). Prospects for complementary SiGeC BiCMOS on thin-film SOI. ECS Transactions, 3, 355–363.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Electronic EngineeringChung Chou University of Science and TechnologyChanghuaTaiwan, Republic of China

Personalised recommendations