Study of the Perimeter Deposition Enhanced Cr4+ Concentration in Cr4+:YAG Single-Clad Crystal Fiber

  • Cheng-Nan Tsai
  • Wei-Chung Ho
  • Sheng-Lung Huang
  • Shih-Kun Liu
  • Yi-Hua Chang
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 293)

Abstract

Cr4+:YAG crystal has been shown an exceptionally successful ultra broad-band amplified spontaneous emission light source that fully cover 1253–1530 nm range (3 dB bandwidth up to 265 nm). Keeping in mind that the amplified spontaneous emission of Cr4+:YAG is proportional to the concentration of Cr4+ ions. The Cr4+ ions are replenished using an electron-gun to deposit CaO on the source rod circumference under annealing treatment at 1350 °C. The laser-heated pedestal growth method was employed to re-grow the Cr4+:YAG single-clad crystal fiber. The doped concentration of CaO can be in-diffuse and it can serve as charge compensators to enhance the concentration of Cr4+ ions. The experimental results indicate that the Cr4+ concentration of Cr4+:YAG crystal fiber can be raised by a factor of 196 %.

Keywords

Doping Deposition Laser heated pedestal growth Cr4+:YAG Crystal fiber 

Notes

Acknowledgments

This work is supported by the National Science Council, Taiwan under grant NSC 101-2221-E-230-012.

References

  1. 1.
    Lai, C. C., Yeh, P., Wang, S. C., Jheng, D. Y., Tsai, C. N., & Huang, S. L. (2012). Strain-dependent fluorescence spectroscopy of nanocrystals and nano-clusters in Cr:YAG crystalline-core fibers and its impact on the lasing behavior. Journal of Physical Chemistry C, 116, 26052–26059.CrossRefGoogle Scholar
  2. 2.
    Lai, C. C., Ke, C. P., Liu, S. K., Jheng, D. Y., Wang, D. J., Chen, M. Y., et al. (2011). Efficient and low-threshold Cr4+:YAG double-clad crystal fiber laser. Optics Letters, 36, 784–786.CrossRefGoogle Scholar
  3. 3.
    French, P. M. W., Rizvi, N. H., Taylor, J. R., & Shestakov, A. V. (1993). Continuous-wave mode- locked Cr4+:YAG laser. Optics Letters, 18, 39–41.CrossRefGoogle Scholar
  4. 4.
    Ishida, Y., & Naganuma, K. (1996). Compact diode-pumped all-solid-state femtosecond Cr4+:YAG laser. Optics Letters, 21, 51–53.CrossRefGoogle Scholar
  5. 5.
    Pavel, N., Saikawa, J., Kurimura, S., & Taira, T. (2001). High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber. Japanese Journal of Applied Physics, 40, 1253–1259.CrossRefGoogle Scholar
  6. 6.
    Takaichi, K., Lu, J., Murai, T., Uematsu, T., Shirakawa, A., Ueda, K., et al. (2002). Chromium doped Y3Al5O12 ceramics- a novel saturable absorber for passively self-Q-switched one-micron solid state lasers. Japanese Journal of Applied Physics, 41, 96–98.CrossRefGoogle Scholar
  7. 7.
    Yagi, H., Yanagitani, T., Yoshida, H., Nakatsuka, M., & Ueda, K. (2006). Highly efficient flashlamp-pumped Cr3+ and Nd3+ codoped Y3Al5O12 ceramic laser. Japanese Journal of Applied Physics, 45, 133–135.CrossRefGoogle Scholar
  8. 8.
    Lo, C. Y., Huang, K. Y., Chen, J. C., Tu, S. Y., & Huang, S. L. (2004). Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission. Optics Letters, 29, 439–441.CrossRefGoogle Scholar
  9. 9.
    Lo, C. Y., Huang, K. Y., Chen, J. C., Chuang, C. Y., Lai, C. C., Huang, S. L., et al. (2005). Double-clad Cr4+:YAG crystal fiber amplifier. Optics Letters, 30, 129–131.CrossRefGoogle Scholar
  10. 10.
    Tsai, C. N., Lin, Y. S., Huang, K. Y., Lin, Y. S., Lai, C. C., & Huang, S. L. (2008). Enhancement of Cr4+ concentration in Y3Al5O12 crystal fiber with pre-growth perimeter deposition. Japanese Journal of Applied Physics, 47, 6369–6373.CrossRefGoogle Scholar
  11. 11.
    Tsai, C. N., Huang, K. Y., Tsai, H. J., Chen, J. C., Lin, Y. S., Huang, S. L., et al. (2008). Distribution of oxidation states of Cr ions in Ca or Ca/Mg co-doped Cr:Y3Al5O12 single crystal fibers with nitrogen or oxygen annealing environments. Journal of Crystal Growth, 310, 2774–2779.CrossRefGoogle Scholar
  12. 12.
    Sugimoto, A., Nobe, Y., & Yamagishi, K. (1994). Crystal growth and optical characterization of Cr, Ca:Y3Al5O12. Journal of Crystal Growth, 140, 349–354.CrossRefGoogle Scholar
  13. 13.
    Chen, J. C., Lo, C. Y., Huang, K. Y., Kao, F. J., Tu, S. Y., & Huang, S. L. (2005). Fluorescence mapping of oxidation states of Cr ions in YAG crystal fibers. Journal of Crystal Growth, 274, 522–529.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Cheng-Nan Tsai
    • 1
  • Wei-Chung Ho
    • 2
  • Sheng-Lung Huang
    • 3
  • Shih-Kun Liu
    • 4
  • Yi-Hua Chang
    • 1
  1. 1.Institute of Electronic EngineeringCheng Shiu UniversityKaohsiungTaiwan, Republic of China
  2. 2.Institute of Electronic EngineeringNational Kaohsiung University of Apply ScienceKaohsiungTaiwan, Republic of China
  3. 3.Institute of Photonics and OptoelectronicsNational Taiwan UniversityTaipeiTaiwan, Republic of China
  4. 4.Institute of Photonics and CommunicationNational Kaohsiung University of Apply ScienceKaohsiungTaiwan

Personalised recommendations