Skip to main content

Abstract

Factorization spaces give a nice geometric way to formalize the notion of operator product expansion, which is used by physicists to formalize quantum field theory in a locally covariant way. This approach was grounded by Beilinson-Drinfeld, and generalized to higher dimension by Francis-Gaitsgory and Rozenblyum. A related approach is given by Costello and Gwilliam’s quantization program. We start this chapter by recalling some basic facts about \(\mathcal{D}\)-modules over the Ran space and their monoidal structures, and then explain the relation, given by chiral Koszul duality, between chiral Lie algebras and factorization coalgebras. We illustrate these notions by various simple examples. We then discuss the derived \(\mathcal{D}\)-geometry of factorization spaces, and in particular the theory of multi-jets for systems of non-linear partial differential equations. We then give an introduction to the use of the generalized affine grassmanian in perturbative quantization. We finish by describing a quite general categorical quantization problem for factorization spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ayala, D., Francis, J., Tanaka, H.L.: Structured singular manifolds and factorization homology. arXiv e-prints (2012). arXiv:1206.5164

  2. Beilinson, A., Drinfeld, V.: Chiral Algebras. American Mathematical Society Colloquium Publications, vol. 51, p. 375. Am. Math. Soc., Providence (2004). ISBN 0-8218-3528-9

    MATH  Google Scholar 

  3. Ben-Zvi, D., Francis, J., Nadler, D.: Integral transforms and Drinfeld centers in derived algebraic geometry. arXiv e-prints (2008). arXiv:0805.0157

  4. Cattaneo, A.S., Felder, G.: Poisson sigma models and deformation quantization. Mod. Phys. Lett. A 16(4–6), 179–189 (2001). doi:10.1142/S0217732301003255. Euroconference on brane new world and noncommutative geometry (Torino, 2000)

    Article  MathSciNet  Google Scholar 

  5. Costello, K., Gwilliam, O.: Factorization algebras in perturbative quantum field theory (2010, preprint)

    Google Scholar 

  6. Costello, K.: A geometric construction of the Witten genus, I. In: Proceedings of the International Congress of Mathematicians. Volume II, pp. 942–959. Hindustan Book Agency, New Delhi (2010)

    Google Scholar 

  7. Deligne, P., Etingof, P., Freed, D.S., Jeffrey, L.C., Kazhdan, D., Morgan, J.W., Morrison, D.R., Witten, E. (eds.): Quantum Fields and Strings: A Course for Mathematicians. Vol. 1, 2. Am. Math. Soc., Providence (1999). Material from the special year on quantum field theory held at the Institute for Advanced Study, Princeton, NJ, 1996–1997. ISBN 0-8218-1198-3

    MATH  Google Scholar 

  8. Drinfel’d, V.G.: Quantum groups. In: Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), pp. 798–820. Am. Math. Soc., Providence (1987)

    Google Scholar 

  9. Frenkel, E., Ben-Zvi, D.: Vertex Algebras and Algebraic Curves, 2nd edn. Mathematical Surveys and Monographs, vol. 88, p. 400. Am. Math. Soc., Providence (2004). ISBN 0-8218-3674-9

    MATH  Google Scholar 

  10. Francis, J., Gaitsgory, D.: Chiral Koszul duality. arXiv e-prints (2011). arXiv:1103.5803

    Google Scholar 

  11. Gaitsgory, D.: Notes on 2D conformal field theory and string theory. In: Quantum Fields and Strings: A Course for Mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997), pp. 1017–1089. Am. Math. Soc., Providence (1999)

    Google Scholar 

  12. Gaitsgory, D., Rozenblyum, N.: Crystals and D-modules. arXiv e-prints (2011). arXiv:1111.2087

  13. Hollands, S., Kopper, C.: The operator product expansion converges in perturbative field theory. arXiv (2011). arXiv:1105.3375

  14. Hollands, S., Wald, R.M.: Axiomatic quantum field theory in curved spacetime. Commun. Math. Phys. 293, 85–125 (2010). doi:10.1007/s00220-009-0880-7. arXiv:0803.2003

    Article  MATH  MathSciNet  Google Scholar 

  15. Kontsevich, M.: Homological algebra of mirror symmetry. In: Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), pp. 120–139. Birkhäuser, Basel (1995)

    Google Scholar 

  16. Kontsevich, M.: Operads and motives in deformation quantization. Lett. Math. Phys. 48, 35–72 (1999). arXiv:math.QA/9904055

    Article  MATH  MathSciNet  Google Scholar 

  17. Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66(3), 157–216 (2003). doi:10.1023/B:MATH.0000027508.00421.bf

    Article  MATH  MathSciNet  Google Scholar 

  18. Lurie, J.: Higher algebra (2009, preprint)

    Google Scholar 

  19. Pantev, T., Toen, B., Vaquie, M., Vezzosi, G.: Quantization and derived moduli spaces I: shifted symplectic structures. arXiv e-prints (2011). arXiv:1111.3209

  20. Quillen, D.: Rational homotopy theory. Ann. Math. (2) 90, 205–295 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  21. Rozenblyum, N.: Introduction to chiral algebras (2009, preprint)

    Google Scholar 

  22. Rozenblyum, N.: Modules over a chiral algebra. arXiv e-prints (2010). arXiv:1010.1998

  23. Rozenblyum, N.: Connections on conformal blocks. Thesis (2011)

    Google Scholar 

  24. Rozenblyum, N.: Continuous moduli functors and quantum field theory (2012, preprint)

    Google Scholar 

  25. Tamarkin, D.E.: Another proof of M. Kontsevich formality theorem. arXiv Mathematics e-prints (1998). arXiv:math/9803025

  26. Voronov, A.A.: The Swiss-cheese operad. arXiv Mathematics e-prints (1998). arXiv:math/9807037

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Paugam, F. (2014). Factorization Spaces and Quantization. In: Towards the Mathematics of Quantum Field Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, vol 59. Springer, Cham. https://doi.org/10.1007/978-3-319-04564-1_24

Download citation

Publish with us

Policies and ethics