Different Classes of Graphs to Represent Microstructures for CSPs

  • Achref El Mouelhi
  • Philippe Jégou
  • Cyril Terrioux
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8323)


The CSP formalism has shown, for many years, its interest for the representation of numerous kinds of problems, and also often provide effective resolution methods in practice. This formalism has also provided a useful framework for the knowledge representation as well as to implement efficient methods for reasoning about knowledge. The data of a CSP are usually expressed in terms of a constraint network. This network is a (constraints) graph when the arity of the constraints is equal to two (binary constraints), or a (constraint) hypergraph in the case of constraints of arbitrary arity, which is generally the case for problems of real life. The study of the structural properties of these networks has made it possible to highlight certain properties, which led to the definition of new tractable classes, but in most cases, they have been defined for the restricted case of binary constraints. So, several representations by graphs have been proposed for the study of constraint hypergraphs to extend the known results to the binary case. Another approach, finer, is interested in the study of the microstructure of CSP, which is defined by graphs. This helped, offering a new theoretical framework to propose other tractable classes.

In this paper, we propose to extend the notion of microstructure to any type of CSP. For this, we propose three kinds of graphs that can take into account the constraints of arbitrary arity. We show how these new theoretical tools can already provide a framework for developing new tractable classes for CSPs. We think that these new representations should be of interest for the community, firstly for the generalization of existing results, but also to obtain original results.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier (2006)Google Scholar
  2. 2.
    Freuder, E.: A Sufficient Condition for Backtrack-Free Search. Journal of the ACM 29(1), 24–32 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic database schemes. Journal of the ACM 30, 479–513 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Janssen, P., Jégou, P., Nouguier, B., Vilarem, M.C.: A filtering process for general constraint satisfaction problems: achieving pairwise-consistency using an associated binary representation. In: Proceedings of IEEE Workshop on Tools for Artificial Intelligence, pp. 420–427 (1989)Google Scholar
  5. 5.
    Dechter, R., Pearl, J.: Tree-Clustering for Constraint Networks. Artificial Intelligence 38, 353–366 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Jégou, P., Terrioux, C.: Hybrid backtracking bounded by tree-decomposition of constraint networks. Artificial Intelligence 146, 43–75 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Garey, M.R., Johnson, D.S.: Computer and Intractability. Freeman (1979)Google Scholar
  8. 8.
    Jégou, P.: Decomposition of Domains Based on the Micro-Structure of Finite Constraint Satisfaction Problems. In: Proceedings of AAAI, pp. 731–736 (1993)Google Scholar
  9. 9.
    Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph. SIAM Journal on Computing 1(2), 180–187 (1972)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Cohen, D.A.: A New Class of Binary CSPs for which Arc-Consistency Is a Decision Procedure. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 807–811. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Salamon, A.Z., Jeavons, P.G.: Perfect Constraints Are Tractable. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 524–528. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Cooper, M., Jeavons, P., Salamon, A.: Generalizing constraint satisfaction on trees: hybrid tractability and variable elimination. Artificial Intelligence 174, 570–584 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    El Mouelhi, A., Jégou, P., Terrioux, C., Zanuttini, B.: On the Efficiency of Backtracking Algorithms for Binary Constraint Satisfaction Problems. In: ISAIM (January 2012)Google Scholar
  14. 14.
    Angelsmark, O., Jonsson, P.: Improved Algorithms for Counting Solutions in Constraint Satisfaction Problems. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 81–95. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Cohen, D.A., Jeavons, P., Jefferson, C., Petrie, K.E., Smith, B.M.: Symmetry definitions for constraint satisfaction problems. Constraints 11(2-3), 115–137 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Mears, C., de la Banda, M.G., Wallace, M.: On implementing symmetry detection. Constraints 14(4), 443–477 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Stergiou, K., Walsh, T.: Encodings of Non-Binary Constraint Satisfaction Problems. In: Proceedings of AAAI, pp. 163–168 (1999)Google Scholar
  18. 18.
    Dechter, R., Pearl, J.: Network-based heuristics for constraint satisfaction problems. Artificial Intelligence 34, 1–38 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Bernstein, P.A., Goodman, N.: The power of natural semijoins. SIAM Journal on Computing 10(4), 751–771 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    El Mouelhi, A., Jégou, P., Terrioux, C., Zanuttini, B.: Some New Tractable Classes of CSPs and their Relations with Backtracking Algorithms. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 61–76. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Jégou, P.: Contribution à l’étude des problèmes de satisfaction de contraintes: Algorithmes de propagation et de résolution – Propagation de contraintes dans les réseau dynamiques. PhD thesis, Université des Sciences et Techniques du Languedoc (January 1991)Google Scholar
  22. 22.
    Peirce, C.S., Hartshorne, C., Weiss, P.: Collected Papers of Charles Sanders Peirce, vol. 3. Harvard University Press (1933)Google Scholar
  23. 23.
    Rossi, F., Petrie, C.J., Dhar, V.: On the Equivalence of Constraint Satisfaction Problems. In: Proceedings of ECAI, pp. 550–556 (1990)Google Scholar
  24. 24.
    Cooper, M., Cohen, D., Jeavons, P.: Characterising Tractable Constraints. Artificial Intelligence 65(2), 347–361 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Haralick, R., Elliot, G.: Increasing tree search efficiency for constraint satisfaction problems. Artificial Intelligence 14, 263–313 (1980)CrossRefGoogle Scholar
  26. 26.
    Nadel, B.: Tree Search and Arc Consistency in Constraint-Satisfaction Algorithms. In: Search in Artificial Intelligence, pp. 287–342. Springer (1988)Google Scholar
  27. 27.
    Dujmovic, V., Fijavz, G., Joret, G., Sulanke, T., Wood, D.R.: On the maximum number of cliques in a graph embedded in a surface. European Journal of Combinatorics 32(8), 1244–1252 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Chmeiss, A., Jégou, P.: A generalization of chordal graphs and the maximum clique problem. Information Processing Letters 62, 111–120 (1997)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Graham, M.H.: On the universal relation. Technical report, University of Toronto (1979)Google Scholar
  30. 30.
    Fagin, R.: Degrees of Acyclicity for Hypergraphs and Relational Database Schemes. Journal of the ACM 30(3), 514–550 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    El Mouelhi, A., Jégou, P., Terrioux, C.: A Hybrid Tractable Class for Non-Binary CSPs. In: Proceedings of ICTAI (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Achref El Mouelhi
    • 1
  • Philippe Jégou
    • 1
  • Cyril Terrioux
    • 1
  1. 1.LSIS - UMR CNRS 7296Aix-Marseille UniversitéMarseille Cedex 20France

Personalised recommendations