Advertisement

Formal Concept Analysis over Graphs and Hypergraphs

  • John G. Stell
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8323)

Abstract

Formal Concept Analysis (FCA) provides an account of classification based on a binary relation between two sets. These two sets contain the objects and attributes (or properties) under consideration. In this paper I propose a generalization of formal concept analysis based on binary relations between hypergraphs, and more generally between pre-orders. A binary relation between any two sets already provides a bipartite graph, and this is a well-known perspective in FCA. However the use of graphs here is quite different as it corresponds to imposing extra structure on the sets of objects and of attributes. In the case of objects the resulting theory should provide a knowledge representation technique for structured collections of objects. The generalization is achieved by an application of work on mathematical morphology for hypergraphs.

Keywords

Binary Relation Formal Concept Concept Lattice Relation Algebra Identity Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BB11]
    Bloch, I., Bretto, A.: Mathematical morphology on hypergraphs: Preliminary definitions and results. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 429–440. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. [BHR07]
    Bloch, I., Heijmans, H.J.A.M., Ronse, C.: Mathematical morphology. In: Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.) Handbook of Spatial Logics, ch. 14, pp. 857–944. Springer (2007)Google Scholar
  3. [BL86]
    Bumby, R.T., Latch, D.M.: Categorical constructions in graph theory. Int. J. Math. Math. Sci. 9, 1–16 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  4. [Blo11]
    Bloch, I.: Mathematical morphology, lattices, and formal concept analysis. In: Napoli, A., Vychodil, V. (eds.) Eighth International Conference on Concept Lattices and Their Applications. CEUR Workshop Proceeedings, vol. 959 (2011), http://ceur-ws.org/Vol-959/
  5. [BMSW08]
    Brown, R., Morris, I., Shrimpton, J., Wensley, C.D.: Graphs of Morphisms of Graphs. Electronic Journal of Combinatorics 15, (#A1) (2008), http://www.combinatorics.org/ojs/
  6. [CL05]
    Chen, X., Li, Q.: Formal topology, Chu space and approximable concept. In: Belohlavek, R., Snasel, V. (eds.) Proceedings of the CLA 2005 International Workshop on Concept Lattices and their Applications, pp. 158–165 (2005), http://ceur-ws.org
  7. [CNS09]
    Cousty, J., Najman, L., Serra, J.: Some morphological operators in graph spaces. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 149–160. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. [DG03]
    Düntsch, I., Gediga, G.: Approximation operators in qualitative data analysis. In: de Swart, H., Orłowska, E., Schmidt, G., Roubens, M. (eds.) TARSKI. LNCS, vol. 2929, pp. 214–230. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. [DP11]
    Dubois, D., Prade, H.: Bridging gaps between several frameworks for the idea of granulation. In: IEEE Symposium on Foundations of Computational Intelligence (FOCI), pp. 59–65. IEEE Press (2011)Google Scholar
  10. [GW99]
    Ganter, B., Wille, R.: Formal Concept Analysis: mathematical foundations. Springer (1999)Google Scholar
  11. [HV93]
    Heijmans, H., Vincent, L.: Graph Morphology in Image Analysis. In: Dougherty, E.R. (ed.) Mathematical Morphology in Image Processing, ch. 6, pp. 171–203. Marcel Dekker (1993)Google Scholar
  12. [Law86]
    Lawvere, F.W.: Introduction. In: Lawvere, F.W., Schanuel, S.H. (eds.) Categories in Continuum Physics. Lecture Notes in Mathematics, vol. 1174, pp. 1–16. Springer (1986)Google Scholar
  13. [Pri06]
    Priss, U.: An FCA interpretation of relation algebra. In: Missaoui, R., Schmidt, J. (eds.) ICFCA 2006. LNCS (LNAI), vol. 3874, pp. 248–263. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. [Pri09]
    Priss, U.: Relation algebra operations on formal contexts. In: Rudolph, S., Dau, F., Kuznetsov, S.O. (eds.) ICCS 2009. LNCS, vol. 5662, pp. 257–269. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. [Ros96]
    Rosenthal, K.I.: The theory of quantaloids. Pitman Research Notes in Mathematics, vol. 348. Longman (1996)Google Scholar
  16. [RZ96]
    Reyes, G.E., Zolfaghari, H.: Bi-Heyting algebras, toposes and modalities. Journal of Philosophical Logic 25, 25–43 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  17. [Ser82]
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)zbMATHGoogle Scholar
  18. [Ste07]
    Stell, J.G.: Relations in Mathematical Morphology with Applications to Graphs and Rough Sets. In: Winter, S., Duckham, M., Kulik, L., Kuipers, B. (eds.) COSIT 2007. LNCS, vol. 4736, pp. 438–454. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. [Ste10]
    Stell, J.G.: Relational granularity for hypergraphs. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS (LNAI), vol. 6086, pp. 267–276. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. [Ste12]
    Stell, J.G.: Relations on hypergraphs. In: Kahl, W., Griffin, T.G. (eds.) RAMiCS 2012. LNCS, vol. 7560, pp. 326–341. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. [Yao04]
    Yao, Y.: A comparative study of formal concept analysis and rough set theory in data analysis. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 59–68. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. [YM09]
    Lei, Y., Luo, M.: Rough concept lattices and domains. Annals of Pure and Applied Logic 159, 333–340 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  23. [ZS06]
    Zhang, G.-Q., Shen, G.: Approximable concepts, Chu spaces and information systems. Theory and Application of Categories 17, 80–102 (2006)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • John G. Stell
    • 1
  1. 1.School of ComputingUniversity of LeedsU.K.

Personalised recommendations