Skip to main content

Fracture

  • Chapter
  • First Online:
  • 4054 Accesses

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 213))

Abstract

In ceramics it is essential to consider all kinds of fractures that a material might experience during its service life time as a consequence of deformation. Fracture propensity is critical in ceramics which does not show elongation (plasticity) because failure can set in at deformations which basically are elastic (brittle ceramics). It is important to understand the theories of fracture, and relate them to the theoretical strength of materials. Among the important theories one can mention Griffith’s theory on fracture, Orowan’s fracture theory, and the dislocation theory of brittle fracture including the Stroh model of fracture. One of the most important parameters regarding fracture is toughness. Fracture toughness is the property that describes the ability of a material containing a crack to resist fracture and is one of the most important properties of any material for design applications. Related to fracture toughness is the term R-curve, which refers to fracture toughness that increases as a crack grows. Prediction of the effect of existing flaws in ceramics on fracture strength is the R-curve. Fracture toughness is an indicator for failure in ceramics and the R-curve expresses ceramic crack resistance. Another way to characterize a ceramic is by the energy absorption concept which is related to its fracture toughness. The J-integral as a fracture criterion is used to express the energy absorbed during crack extension. Fracture may occur in ceramics under static load, time dependent and cyclic deformation. Toughness can be improved by changing the course of crack, by crack tip shielding, crack bridging and crack healing. In ceramics undergoing transformation, transformation-toughening can improve the toughness.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Griffith AA (1924) The phenomena of rupture and flows in solids. In: Proceedings of the 1st international congress of applied mechanics, Delft, pp 55–63

    Google Scholar 

  2. Kelly A, MacMillan NH (1986) Strong Solids, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  3. Lawn B (1993) Fracture of brittle solids, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  4. Ritchie RO (1999) Int J Fract 100:55

    Article  Google Scholar 

  5. Schmid E, Boas W (1935) Kristalplastizitat. Springer Verlag, Berlin. English edition: Hughes FA et al. (1950) Plasticity in Crystals

    Google Scholar 

  6. Soderholm K-J (2010) Dent Mater 26:e63

    Article  Google Scholar 

  7. Suh NP, Turner APL (1975) Elements of mechanical behavior of solids. Scripta Book Company, Washington, D. C, pp 422–423

    Google Scholar 

  8. Vander Voort GF (1987) ASM Handbook, vol 12. ASM International Fractography, USA, p 102

    Google Scholar 

  9. Zener C (1948) The macro-mechanism of fracture, in Fracturing of metals. Am Soc Metals 3(Metals Park, Ohio)

    Google Scholar 

Further References

  1. Ando K, Takahashi K, Nakayama S, Saito S (2002) J Am Ceram Soc 85:2268

    Article  Google Scholar 

  2. Argona AS, Orowana E (1964) Phil Mag 9:1003

    Article  Google Scholar 

  3. Bando Y, Ito S, Tomozawa M (1984) Commun Am Ceram Soc 67:C36

    Google Scholar 

  4. Barenblatt GI (1962) Adv Appl Mech 7:55

    Article  MathSciNet  Google Scholar 

  5. Brown WF Jr, Srawley JE (1976) Am Soc Test Mater 13–15 (Spec Tech Publ No:410)

    Google Scholar 

  6. Deng ZY, She J, Inagaki Y, Yang JF, Ohji T, Tanaka Y (2004) J Eur Ceram Soc 24

    Google Scholar 

  7. Eftis J, Liebowitz H (1972) Inter J Fract Mech 8:383

    Google Scholar 

  8. Erdogan F, Joseph PF (1989) J Am Ceram Soc 72:262

    Article  Google Scholar 

  9. Evans AG, Cannon RM (1986###) Acta merall 34:761

    Article  Google Scholar 

  10. Evans AG (1990###) J Am Ceram Soc 73:187

    Article  Google Scholar 

  11. Faber KT, Evans AG (1983###) Acta metal 31:565, 577

    Article  Google Scholar 

  12. Fernando Jorge Lino Alves, Faculdade de Engenharia, Departamento de Engenharia Mecânica e Gestão Industrial, Porto, Portugal

    Google Scholar 

  13. Griffith AA (1920) Phil Trans Roy Soc A221:163 (London)

    Google Scholar 

  14. Hannink RHJ, Swain MV (1994) Annu Rev Mater Sci 24:359

    Article  Google Scholar 

  15. Hannink RHJ, Kelly PM, Muddle BC (2000) J Am Ceram Soc 83:461

    Article  Google Scholar 

  16. Harmer MP, Chan H, Miller G (1992) J Am Ceram Soc 75:1715

    Article  Google Scholar 

  17. Hasselman DPH, Fulrath RM (1966) J Am Ceram Soc 49:68

    Article  Google Scholar 

  18. Homeny J, Darroudi T, Bradt RC (2008) J Am Ceram Soc 91:1986, 68:326 (1980)

    Google Scholar 

  19. Hulse CO, Pask JA (2006) J Am Ceram Soc 43:373

    Google Scholar 

  20. Inglis CE (1913) Institute of naval architects (Proceedings) 55, pp 219–241

    Google Scholar 

  21. Irwin GR (1957) J Appl Mech 24:361

    Google Scholar 

  22. Johnston TL, Stokes RJ, Li CH (1959) Phil Mag 4:1316

    Article  Google Scholar 

  23. Johnston TL, Stokes RJ, Li CH (1962) Phil Mag 7:23

    Article  Google Scholar 

  24. Johnston WG (1960) Phil Mag 5:407

    Article  Google Scholar 

  25. Kim W-J (1995) Met Mater 1(2):117–124

    Google Scholar 

  26. Kruzic JJ, Satet RL, Hoffmann MJ, Cannon RM, Ritchie RO (2008) J Am Ceram Soc 91:1986

    Article  Google Scholar 

  27. Lange FF (1971) J Amer Ceram Soc 54:614

    Article  Google Scholar 

  28. Liu S-Y, Chen I-W (1991) J Am Ceram Soc 74:1197

    Article  Google Scholar 

  29. Lino Alves FJ, Faculdade de Engenharia, Departamento de Engenharia Mecânica e Gestão Industrial, Porto, Portugal

    Google Scholar 

  30. Low JR Jr (1963–65) The fracture of metals. Prog Mater Sci 12:3

    Google Scholar 

  31. Ohji T, Yamauchi Y (1993) J Am Ceram Soc 76:3105

    Article  Google Scholar 

  32. Orowan E (1949) Rep Prog Phys 12:185

    Article  Google Scholar 

  33. Padture NP (1991) Crack resistance and strength properties of some alumina-based ceramics with tailored microstructures. Ph.D. Thesis, Lehigh University

    Google Scholar 

  34. Park S, Sun CT (1995) J Am Ceram Soc 78:1475

    Article  Google Scholar 

  35. Rice JR, Paris PC, Merkle JG (1973) J Am Soc Test Mater 231–245 (Spec Tech Publ No:536)

    Google Scholar 

  36. Rice JR (1968) J Appl Mech 35:379

    Article  Google Scholar 

  37. Ritchie RO, Yu W, Bucci RJ (1989) Eng Fract Mech 32:361

    Article  Google Scholar 

  38. Sarfarazi M, Ghosh SK (1987) Eng Fract Mech 27:257

    Article  Google Scholar 

  39. Schissler DJ, Chokshi AH, Nieh TG, Wadsworth J (1991) Acta metal Mater 39:3227

    Article  Google Scholar 

  40. Shih CJ, Meyers MA, Nesterenko VF, Chen SJ (2000) Acta mater 48:2399

    Article  Google Scholar 

  41. Shumate EH Jr (2009) The radius of curvature in the prime vertical. ITEA J 30:159

    Google Scholar 

  42. Sohncke L (1869) Ann Phys L p z 137:177

    Article  Google Scholar 

  43. Stroh AN (1955) Proc Roy Soc (London) 223A:548

    Article  Google Scholar 

  44. Stroh AN (1957) Adv Phys 6:418

    Article  Google Scholar 

  45. Swanson PL, Fairbanks CJ, Lawn BR, Mai Y-W, Hockey BJ (1987) J Am Ceram Soc 70:279

    Article  Google Scholar 

  46. Vekinis G, Ashby MF, Beamont PWR (1990) Acta metall mater 38:1151

    Google Scholar 

  47. Wang Z, Jiang Q, White GS, Richardson AK (1998) Smart Mater Struct 7:867

    Article  Google Scholar 

  48. Yang K-H, Ho N-J, Lu H-Y (2011) J Am Ceram Soc 94:3104

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Pelleg .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pelleg, J. (2014). Fracture. In: Mechanical Properties of Ceramics. Solid Mechanics and Its Applications, vol 213. Springer, Cham. https://doi.org/10.1007/978-3-319-04492-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04492-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04491-0

  • Online ISBN: 978-3-319-04492-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics