Risk Reduction of Cervical Cancer Through HPV Screening and Vaccination—Assumptions and Reality

  • Leonore Thümer
  • Ulrike Protzer
  • Vanadin Seifert-Klauss


Cancer is a leading cause of death worldwide. It is estimated that about 20 % of all cancer deaths are originally caused by infectious diseases, making them an important risk factor. The classical approach to lower cancer risk has been the screening for precancerous lesions. In addition, screening for primary infections has become an option in order to evaluate individual cancer risks and to offer an intensive follow-up and intervention for patients who have tested positive. Furthermore, vaccines have been developed to prevent high risk infections and subsequent malignant diseases in the first place. Prospective epidemiological studies are necessary to evaluate the effect of prevention methods on cancer incidences but will give results only after a very long follow-up period. Therefore, mathematical models for risk prediction and risk reduction will be helpful tools to determine the effectiveness of screening and prevention programs. In this chapter we discuss cervical cancer as an example of a malignancy which may in many cases be preventable. During the last decades cervical cancer screening was based on cytological abnormalities. Since human papillomaviruses (HPV) have been identified to be the main risk factor for cervical cancer, the detection of HPV DNA in cells of the cervix has been investigated as a surrogate marker for high cancer risk. Here, we give an overview about the epidemiology and natural course of cervical cancer and HPV infections. We discuss benefits and limitations of current screening and prevention options which include cytology, histology, HPV detection, and HPV vaccination. Finally, we make special emphasis on the complex factors that need to be considered when developing mathematical models for prediction of risk reduction of cancer rates.


Human papillomaviruses HPV Cervical cancer Cancer risk Prevention 


Selected Bibliography

  1. 1.
    ACOG Practice Bulletin No. 109: Cervical cytology screening. Obstet. Gynecol. 114, 1409–1420 (2009) Google Scholar
  2. 2.
    ACOG Committee Opinion No. 425: Health care for undocumented immigrants. Obstet. Gynecol. 113, 251–254 (2009) Google Scholar
  3. 3.
    AWMF, Diagnostik und Therapie des Zervixkarzinoms. Interdisziplinäre Leitlinie der Deutschen Krebsgesellschaft e.V. und der Deutschen Gesellschaft für Gynäkologie und Geburtshilfe. AWMF online (2008) Google Scholar
  4. 4.
    F.X. Bosch, M.M. Manos, N. Muñoz, M. Sherman, A.M. Jansen, J. Peto, M.H. Schiffman, V. Moreno, R. Kurman, K.V. Shah, Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. international biological study on cervical cancer (IBSCC) study group. J. Natl. Cancer Inst. 87, 796–802 (1995) CrossRefGoogle Scholar
  5. 5.
    F.X. Bosch, A.N. Burchell, M. Schiffman, A.R. Giuliano, S. de Sanjose, L. Bruni, G. Tortolero-Luna, S.K. Kjaer, N. Muñoz, Epidemiology and natural history of human papillomavirus infections and type-specific implications in cervical neoplasia. Vaccine, Suppl. 26(10), K1–K16 (2008) Google Scholar
  6. 6.
    S. Cotton, L. Sharp, J. Little, M. Cruickshank, R. Seth, L. Smart, I. Duncan, K. Harrild, K. Neal, N. Waugh, The role of human papillomavirus testing in the management of women with low-grade abnormalities: multicentre randomised controlled trial. BJOG 117, 645–659 (2010) CrossRefGoogle Scholar
  7. 7.
    T. Cox, J. Cuzick, HPV DNA testing in cervical cancer screening: from evidence to policies. Gynecol. Oncol. 103, 8–11 (2006) CrossRefGoogle Scholar
  8. 8.
    J. Cuzick, M. Arbyn, R. Sankaranarayanan, V. Tsu, G. Ronco, M.-H. Mayrand, J. Dillner, C.J.L.M. Meijer, Overview of human papillomavirus-based and other novel options for cervical cancer screening in developed and developing countries. Vaccine, Suppl. 26(10), K29–K41 (2008) CrossRefGoogle Scholar
  9. 9.
    D.M. Harper, E.L. Franco, C.M. Wheeler, A.-B. Moscicki, B. Romanowski, C.M. Roteli-Martins, D. Jenkins, A. Schuind, S.A. Costa Clemens, G. Dubin, Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet 367, 1247–1255 (2006) CrossRefGoogle Scholar
  10. 10.
    G.Y. Ho, R. Bierman, L. Beardsley, C.J. Chang, R.D. Burk, Natural history of cervicovaginal papillomavirus infection in young women. N. Engl. J. Med. 338, 423–428 (1998) CrossRefGoogle Scholar
  11. 11.
    C.J.A. Hogewoning, M.C.G. Bleeker, A.J.C. van den Brule, F.J. Voorhorst, P.J.F. Snijders, J. Berkhof, P.J. Westenend, C.J.L.M. Meijer, Condom use promotes regression of cervical intraepithelial neoplasia and clearance of human papillomavirus: a randomized clinical trial. Int. J. Cancer 107, 811–816 (2003) CrossRefGoogle Scholar
  12. 12.
    H. Katki, W.K. Kinney, B. Fetterman, T. Lorey, N.E. Poitras, L. Cheung, F. Demuth, M. Schiffman, S. Wacholder, P.E. Castle, Cervical cancer risk for women undergoing concurrent testing for human papillomavirus and cervical cytology: a population-based study in routine clinical practice. Lancet Oncol. 12, 663–672 (2011) CrossRefGoogle Scholar
  13. 13.
    M.J. Khan, P.E. Castle, A.T. Lorincz, S. Wacholder, M. Sherman, D.R. Scott, B.B. Rush, A.G. Glass, M. Schiffman, The elevated 10-year risk of cervical precancer and cancer in women with human papillomavirus (HPV) type 16 or 18 and the possible utility of type-specific HPV testing in clinical practice. J. Natl. Cancer Inst. 97, 1072–1079 (2005) CrossRefGoogle Scholar
  14. 14.
    L. Koutsky, Epidemiology of genital human papillomavirus infection. Am. J. Med. 102, 3–8 (1997) CrossRefGoogle Scholar
  15. 15.
    L.A. Koutsky, K.A. Ault, C.M. Wheeler, D.R. Brown, E. Barr, F.B. Alvarez, L.M. Chiacchierini, K.U. Jansen, A controlled trial of a human papillomavirus type 16 vaccine. N. Engl. J. Med. 347, 1645–1651 (2002) CrossRefGoogle Scholar
  16. 16.
    N. Li, S. Franceschi, R. Howell-Jones, P.J.F. Snijders, G.M. Clifford, Human papillomavirus type distribution in 30,848 invasive cervical cancers worldwide: variation by geographical region, histological type and year of publication. Int. J. Cancer 128, 927–935 (2011) CrossRefGoogle Scholar
  17. 17.
    M. Poljak, B.J. Kocjan, Commercially available assays for multiplex detection of alpha human papillomaviruses. Expert Rev. Anticancer Ther. 8, 1139–1162 (2010) CrossRefGoogle Scholar
  18. 18.
    M. Schiffman, P.E. Castle, J. Jeronimo, A.C. Rodriguez, S. Wacholder, Human papillomavirus and cervical cancer. Lancet 370, 890–907 (2007) CrossRefGoogle Scholar
  19. 19.
    M. Schiffman, N. Wentzensen, S. Wacholder, W. Kinney, J.C. Gage, P.E. Castle, Human papillomavirus testing in the prevention of cervical cancer. J. Natl. Cancer Inst. 103, 368–383 (2011) CrossRefGoogle Scholar
  20. 20.
    A. Szarewski, L. Ambroisine, L. Cadman, J. Austin, L. Ho, G. Terry, S. Liddle, R. Dina, J. McCarthy, H. Buckley, C. Bergeron, P. Soutter, D. Lyons, J. Cuzick, Comparison of predictors for high-grade cervical intraepithelial neoplasia in women with abnormal smears. Cancer Epidemiol. Biomark. Prev. 17, 3033–3042 (2008) CrossRefGoogle Scholar
  21. 21.
    J.M. Walboomers, M.V. Jacobs, M.M. Manos, F.X. Bosch, J.A. Kummer, K.V. Shah, P.J. Snijders, J. Peto, C.J. Meijer, N. Muñoz, Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 189, 12–19 (1999) CrossRefGoogle Scholar

Additional Literature

  1. 22.
    Z. Hel, E. Stringer, J. Mestecky, Sex steroid hormones, hormonal contraception and the immunobiology of human immunodeficiency virus-1 infection. Endocr. Rev. 31(1), 79–97 (2010) CrossRefGoogle Scholar
  2. 23.
    G. La Torre, C. de Waure, G. Chiaradia, A. Mannocci, S. Capri, W. Ricciardi, The health technology assessment of bivalent HPV vaccine cervarix in Italy. Vaccine 28, 3379–3384 (2010) CrossRefGoogle Scholar
  3. 24.
    G. Scroczynski, P. Schnell-Inderst, N. Mühlberger, K. Lang, P. Aidelsburger, J. Wasem, T. Mittendorf, J. Engel, P. Hillemanns, K.-U. Petry, A. Krämer, U. Siebert, Entscheidungsanalytische Modellierung zur Evaluation der Langzeit-Effektivität und Kosten-Effektivität des Einsatzes der HPV-DNA-Diagnostik Im Rahmen der Zervixkarzinomfrüherkennung in Deutschland. Schriftenreihe Health Technology Assessment (HTA) in der Bundesrepublik Deutschland, vol. 98 (2010) Google Scholar
  4. 25.
    N.J. Veldhuijzen, P.J. Snijders, P. Reiss, C.J. Meijer, J.H. van de Wijgert, Factors affecting transmission of mucosal human papillomavirus. Lancet Infect. Dis. 10(12), 862–874 (2010) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Leonore Thümer
    • 1
  • Ulrike Protzer
    • 2
  • Vanadin Seifert-Klauss
    • 3
  1. 1.Virology, Department of MedicineTechnische Universität MünchenMunichGermany
  2. 2.Chair of Virology, Department of MedicineTechnische Universität MünchenMunichGermany
  3. 3.Gynaecology, Department of Medicine, Klinikum Rechts der IsarTechnische Universität MünchenMunichGermany

Personalised recommendations