Risk in Historical Perspective: Concepts, Contexts, and Conjunctions

  • Karin Zachmann


Although the etymological roots of the term risk can be traced back as far as the late Middle Ages, the modern concept of risk appeared only gradually, with the transition from traditional to modern society. The modern understanding of risk presupposes subjects or institutions, accountable for their actions, that make decisions under conditions of apparent uncertainty. Some apparent uncertainties, however, can be measured or quantified probabilistically and are, therefore, more precisely called “risks”. Situations of “risk” in human society can thus be “managed”. Relying on probability calculation, which emerged during the 17th and the 18th centuries but became truly prevalent only in the 20th century, risk became a theoretical focus designed to bolster a scientific, mathematically-based approach toward uncertainty. Insurance companies led in demanding and developing a concretely applicable concept of risk, since calculating the probability of premature death or material hazards related to either humans or material things, such as ships, buildings, and their contents, was essential for their core business and success. However, by the middle of the 20th century—an Age of Extremes, as it has been aptly characterized—nuclear weapons and their use in Japan and subsequent further development early in the Cold War dramatically increased awareness of potential hazards derived from these and other achievements in science, engineering and warfare. Therefore, the Age of Extremes stimulated more and new research on risk. With new tools, such as operations research, digital computers, systems analysis, and systems management, all of which had been introduced in the military and aerospace sectors in the course of World War II, the intellectual resources necessary to estimate the extent and the probability of failures and accidents in nuclear warfare and beyond increased dramatically. Out of the Cold War effort to create the “Peaceful Atom”, nuclear-power reactor safety studies became landmarks in risk analysis, and this type of study later achieved relevance in many more areas. This chapter seeks to explore the evolution of risk research and risk management in its social and political contexts in order to understand the underlying concepts of risk and safety as social constructs. The historical survey focuses mainly on the last two centuries. It starts with the advent of the modern era when with spreading bourgeois virtues it became common to plan for the future but not to bet on it. This involved an increasing need to calculate future uncertainties in order to manage them as risks. The study stops at the end of the Cold War, when the collapse of the socialist bloc settled the risky confrontation between the two opposing societal camps. By no means did the termination of the Cold War end the story about risk. On the contrary, as late modern societies accumulate more and more knowledge they simultaneously increase the amount of ignorance that is the cause of newly emerging risk. How these risks are tackled is the topic of the other chapters in this book. This historical survey does not aim at completeness but rather at understanding the major transformations in the evolution of risk. Thus, not all areas in the history of risk are covered here; for instance, the important field of financial risk is treated by other Chap. 4.


Food safety regulation Probabilistic health risk research Quality and reliability engineering Reactor safety studies Steam boiler safety 


Selected Bibliography

  1. 1.
    C. Althaus, A disciplinary perspective on the epistemological status of risk. Risk Anal. 25, 567–588 (2005) CrossRefGoogle Scholar
  2. 2.
    U. Beck, Risikogesellschaft. Auf dem Weg in eine andere Moderne (Suhrkamp, Frankfurt, 1986) Google Scholar
  3. 3.
    U. Beck, Weltrisikogesellschaft. Auf der Suche nach der verlorenen Sicherheit (Suhrkamp, Frankfurt, 2007) Google Scholar
  4. 4.
    W. Bonß, Vom Risiko. Unsicherheit und Ungewissheit in der Moderne (Hamburger Edition, Hamburg, 1995) Google Scholar
  5. 5.
    J.G. Burke, Bursting boilers and the federal power. Technol. Cult. 7, 1–23 (1966) CrossRefGoogle Scholar
  6. 6.
    R. Carlisle, Probabilistic risk assessment in nuclear reactors: engineering success, public relations failure. Technol. Cult. 38, 920–941 (1997) CrossRefGoogle Scholar
  7. 7.
    R.B. Cumming, Is risk assessment a science? Risk Anal. 1, 1–3 (1981) CrossRefGoogle Scholar
  8. 8.
    K. Daeves, Großzahlforschung. Grundlagen und Anwendungen eines neuen Arbeitsverfahrens für die Industrieforschung mit zahlreichen praktischen Beispielen (Stahleisen m.b.H., Düsseldorf, 1924) Google Scholar
  9. 9.
    K. Daeves, A. Beckel, Großzahl-Forschung und Häufigkeits-Analyse. Ein Leitfaden (Verlag Chemie, Weinheim, 1948) Google Scholar
  10. 10.
    L. Daston, The domestication of risk: mathematical probability and insurance 1650–1830, in The Probabilistic Revolution, ed. by L. Krüger, L.J. Daston, M. Heidelberger. Ideas in History, vol. 1 (MIT Press, Cambridge, 1987), pp. 237–260 Google Scholar
  11. 11.
    L. Daston, Classical Probability in the Enlightenment (Princeton University Press, Princeton, 1988) Google Scholar
  12. 12.
    M. Douglas, A. Wildavsky, Risk and Culture. An Essay on the Selection of Technical and Environmental Dangers (University of California Press, Berkeley, 1982) Google Scholar
  13. 13.
    F. Ewald, Der Vorsorgestaat (Suhrkamp, Frankfurt, 1993) Google Scholar
  14. 14.
    D. Ford, A History of Federal Nuclear Safety Assessments: From WASH-740 Through the Reactor Safety Study (Union of Concerned Scientists, Cambridge, 1977) Google Scholar
  15. 15.
    J.-B. Fressoz, Beck back in the 19th century: towards a genealogy of risk society. Hist. Technol. 23, 333–350 (2007) CrossRefGoogle Scholar
  16. 16.
    T.C. Fry, Probability and Its Engineering Uses (Van Nostrand, New York, 1928) zbMATHGoogle Scholar
  17. 17.
    P. Galison, Image and Logic (University of Chicago Press, Chicago, 1997) Google Scholar
  18. 18.
    J. Garrick, The approach to risk analysis in three industries: nuclear power, space systems, and chemical process. Reliab. Eng. Syst. Saf. 23, 195–205 (1988) CrossRefGoogle Scholar
  19. 19.
    G. Gigerenzer et al., The Empire of Chance. How Probability Changed Science and Everyday Life (Cambridge University Press, Cambridge, 1989) CrossRefGoogle Scholar
  20. 20.
    E. Hobsbawm, Das Zeitalter der Extreme. Weltgeschichte des 20. Jahrhunderts (Deutscher Taschenbuch Verlag, München, 1999) Google Scholar
  21. 21.
    S. Jasanoff, The Fifth Branch. Science Advisers as Policymakers (Harvard University Press, Cambridge, 1990) Google Scholar
  22. 22.
    F. Knight, Risk, Uncertainty and Profit, 1st edn. (Houghton Mifflin, Boston, 1921) Google Scholar
  23. 23.
    M. Lengwiler, Risikopolitik im Sozialstaat. Die schweizerische Unfallversicherung (Böhlau, Köln, 2006) Google Scholar
  24. 24.
    N. Luhmann, Soziologie des Risikos (de Gruyter, Berlin, 1991) CrossRefGoogle Scholar
  25. 25.
    R. Lukes, 150 Jahre Recht der technischen Sicherheit in Deutschland—Geschichtliche Entwicklung und Durchsetzungsmöglichkeiten, in Risiko—Schnittstelle zwischen Recht und Technik, ed. by VDE (VDE-Verlag, Berlin, 1982), pp. 11–43 Google Scholar
  26. 26.
    O. Morgenstern, Spieltheorie und Wirtschaftswissenschaft (Oldenburg, Wien, 1963) zbMATHGoogle Scholar
  27. 27.
    J.v. Neumann, O. Morgenstern, Theory of Games and Economic Behavior (Princeton University Press, Princeton, 1944) zbMATHGoogle Scholar
  28. 28.
    Öko-Institut Freiburg (ed.), Die Risiken der Atomkraftwerke. Der Anti-Rasmussen-Report der Union of Concerned Scientists (Adolf Bonz, Fellbach, 1980) Google Scholar
  29. 29.
    R. Pabst, Theorie und Methodenentwicklung bei der Versicherung technischer Risiken am Beispiel der Maschinenversicherung in Deutschland (Diss., Fakultät Wirtschaftswissenschaft, TU München, 2011) Google Scholar
  30. 30.
    C. Perrow, Normale Katastrophen. Die unvermeidbaren Risiken der Großtechnik (Campus, Frankfurt, 1992) Google Scholar
  31. 31.
    I. Pfeffer, Insurance and Economic Theory (Richard D. Irwin, Boston, 1956) Google Scholar
  32. 32.
    J. Radkau, Aufstieg und Krise der deutschen Atomwirtschaft 1945–1975. Verdrängte Alternativen in der Kerntechnik und der Ursprung der nuklearen Kontroverse (Rowohlt, Reinbek bei Hamburg, 1983) Google Scholar
  33. 33.
    N.C. Rasmussen, Reactor safety study. An assessment of accident risk in U.S. Commercial Nuclear Power Plants (WASH-1400, NUREG 75/014). U.S. Nuclear Regulatory Commission, Washington, 1975 Google Scholar
  34. 34.
    O. Renn, Three decades of risk research: accomplishments and new challenges. J. Risk Res. 1, 49–71 (1998) CrossRefGoogle Scholar
  35. 35.
    O. Renn, Risk Governance. Coping with Uncertainty in a Complex World (Earthscan, London, 2008) Google Scholar
  36. 36.
    W.A. Shewhart, Economic Control of Quality of Manufactured Product, 1st edn. (Van Nostrand, New York, 1931) Google Scholar
  37. 37.
    J.V. Simson, Kanalisation und Stadthygiene im 19. Jahrhundert (VDI, Düsseldorf, 1983) Google Scholar
  38. 38.
    K.M. Thompson, P.F. Deisler Jr., R.C. Schwing, Interdisciplinary vision: the first 25 years of the society for risk analysis (SRA), 1980–2005. Risk Anal. 25, 1333–1386 (2005) CrossRefGoogle Scholar
  39. 39.
    R. Tobies, Morgen möchte ich wieder 100 herrliche Sachen ausrechnen. Iris Runge bei Osram und Telefunken (Franz Steiner, Stuttgart, 2010) zbMATHGoogle Scholar
  40. 40.
    G. Wiesenack, Wesen und Geschichte der Technischen Überwachungsvereine (Carl Heymanns, Köln, 1971) Google Scholar
  41. 41.
    K. Zachmann, P. Østby, Food, technology, and trust: an introduction. Hist. Technol. 27, 1–10 (2001) CrossRefGoogle Scholar

Additional Literature and Sources

  1. 42.
    B. Bächi, Zur Krise der westdeutschen Grenzwertpolitik in den 1970er Jahren: Die Verwandlung des Berufskrebses von einem toxikologischen in ein sozioökonomisches Problem. Ber. Wiss.gesch. 33, 419–435 (2010) CrossRefGoogle Scholar
  2. 43.
    P. Bernstein, Against the Gods. The Remarkable Story of Risk (Wiley, New York, 1996) Google Scholar
  3. 44.
    W. Bonß, (Un-)Sicherheit als Problem der Moderne, in Handeln unter Risiko. Gestaltungsansätze zwischen Wagnis und Vorsorge, ed. by H. Münkler, M. Bohlender, S. Meurer (transcript, Bielefeld, 2010), pp. 33–53 Google Scholar
  4. 45.
    Der Bundesminister für Forschung und Technologie (ed.), Deutsche Risikostudie Kernkraftwerke. Eine Studie zu dem durch Störfälle in Kernkraftwerken verursachten Risiko (TÜV Rheinland, Bonn, 1980). Hauptband Google Scholar
  5. 46.
    Der Bundesminister für Forschung und Technologie (ed.), Deutsche Risikostudie Kernkraftwerke Phase B (TÜV Rheinland, Bonn, 1989). Available at Google Scholar
  6. 47.
    G.A. Campbell, Mathematics in industrial research: ‘selling’ mathematics to the industries. Bell Syst. Tech. J. 3, 550–557 (1925) CrossRefGoogle Scholar
  7. 48.
    R. Carson, Silent Spring (Houghton Mifflin, Boston, 1962) Google Scholar
  8. 49.
    A. Clow, N.L. Clow, The Chemical Revolution: A Contribution to Social Technology (Batchworth Press, London, 1952) Google Scholar
  9. 50.
    V. Covello, J. Mumpower, Risk analysis and risk management: an historical perspective. Risk Anal. 5, 103–120 (1986) CrossRefGoogle Scholar
  10. 51.
    P.-A. Dessaux, Chemical expertise and food market regulation in Belle-Epoque France. Hist. Technol. 23, 351–368 (2007) CrossRefGoogle Scholar
  11. 52.
    B.S. Dhillon, Systems safety: a survey. Microelectron. Reliab. 22, 265–275 (1982) CrossRefGoogle Scholar
  12. 53.
    A. Doering-Manteuffel, L. Raphael, Nach dem Boom. Perspektiven auf die Zeitgeschichte seit 1970 (Vandenhoeck & Ruprecht, Göttingen, 2008) Google Scholar
  13. 54.
    N. Doorn, S.O. Hansson, Should probabilistic design replace safety factors? Philos. Technol. 24, 151–168 (2011). Available at CrossRefGoogle Scholar
  14. 55.
    C. Ericson, Fault tree analysis—a history, in Proceedings of the 17th International System Safety Conference (1999). Available at Google Scholar
  15. 56.
    C. Ericson, A short history of system safety. J. Syst. Saf. 42, 3 (2006). Available at Google Scholar
  16. 57.
    R. Evans, Tod in Hamburg. Stadt, Gesellschaft und Politik in den Cholera-Jahren 1830–1910 (Rowohlt, Reinbek bei Hamburg, 1990) Google Scholar
  17. 58.
    R.B. Fogel, The Escape from Hunger and Premature Death, 1700–2100: Europe, America, and the Third World (Cambridge University Press, Cambridge, 2004) CrossRefGoogle Scholar
  18. 59.
    T.C. Fry, Industrial mathematics, in Research—A National Ressource—II, Section VI, Part 4, Washington, D.C. (1940), pp. 268–288 Google Scholar
  19. 60.
    J. Garrick, Risk assessment practices in the space industry: the move toward quantification. Risk Anal. 9, 1–7 (1989) CrossRefGoogle Scholar
  20. 61.
    Gesellschaft für Anlagen- und Reaktorsicherheit (GRS), (ed.), 30 Jahre Forschungs- und Sachverständigentätigkeit (GRS, Köln, 2007). Available at Google Scholar
  21. 62.
    T. Gieryn, Boundary-work and the demarcation of science from non-science: strains and interests in professional ideologies of scientists. Am. Sociol. Rev. 48, 781–795 (1983) CrossRefGoogle Scholar
  22. 63.
    D. Haasl, Advanced concepts in fault tree analysis. Presented at system safety symposium sponsored by University of Washington and the Boeing Company, June 8–9, 1965, 1. Available at
  23. 64.
    A.I. Hardy, Der Arzt, die Ingenieure und die Städteassanierung. Georg Varrentrapps Visionen zur Kanalisation, Trinkwasserversorgung und Bauhygiene in deutschen Städten (1860–1880). Technikgeschichte 72, 91–126 (2005) Google Scholar
  24. 65.
    V. Hierholzer, Nahrung nach Norm. Regulierung von Nahrungsmittelqualität in der Industrialisierung 1871–1914 (Vandenhoeck & Ruprecht, Göttingen, 2010) Google Scholar
  25. 66.
    D. Hounshell, The cold war, RAND, and the generation of knowledge, 1946–1962. Hist. Stud. Phys. Sci. 27, 237–267 (1997) CrossRefGoogle Scholar
  26. 67.
    D.A. Hounshell, J.K. Smith, Science and Corporate Strategy. Du Pont R&D, 1902–1980 (Cambridge University Press, Cambridge, 1988), pp. 555–572 Google Scholar
  27. 68.
    S. Jasanoff, Bridging the two cultures of risk analysis. Risk Anal. 13, 123–129 (1993) CrossRefGoogle Scholar
  28. 69.
    S. Jasanoff, Designs of Nature. Science and Democracy in Europe and the United States (Princeton University Press, Princeton, 2005) Google Scholar
  29. 70.
    J.M. Juran, Early SQC: a historical supplement. Qual. Prog. 30, 73–81 (1997) Google Scholar
  30. 71.
    P. Koch, Versicherungsgeschichte in Stichworten. Schriftenreihe des Vereins zur Förderung der Versicherungswissenschaft in München e.V., vol. 32 (1988), pp. 1–16 Google Scholar
  31. 72.
    A. Labisch, J. Vögele, Stadt und Gesundheit. Anmerkungen zur neueren sozial- und medizinhistorischen Diskussion in Deutschland. Arch. Soz.gesch. 37, 396–424 (1997) Google Scholar
  32. 73.
    W.S. Lee, D.L. Grosh, F.A. Tillman, C.H. Lie, Fault tree analysis, methods, and applications—a review. IEEE Trans. Reliab. 34, 198 (1985) Google Scholar
  33. 74.
    W. Masing, Von TESTA zur Protagonistin der Business Excellence—Geschichte der Deutschen Gesellschaft für Qualität e.V, in Qualitätsmanagement—Tradition und Zukunft. Festschrift zum 50-jährigen Bestehen der Deutschen Gesellschaft für Qualität e.V., ed. by W. Masing et al. (Hanser, München, 2003), pp. 389–418 Google Scholar
  34. 75.
    D.H. Meadows, J. Randers, D.L. Meadows, The Limits to Growth (Universe Books, New York, 1972) Google Scholar
  35. 76.
    L. Merz, Philosophie des Reaktorschutzes. atw, 118–126 (1970) Google Scholar
  36. 77.
    L. Merz, Restrisiko. Das Doppelgesicht der Reaktorsicherheit. atw, 294–298 (1981) Google Scholar
  37. 78.
    P. Miranti, Corporate learning and quality control at the bell system, 1877–1929. Bus. Hist. Rev. 79, 39–72 (2005) CrossRefGoogle Scholar
  38. 79.
    W. Poundstone, Prisoner’s Dilemma (Anchor Book/Doubleday, New York, 1993) Google Scholar
  39. 80.
    President Eisenhower’s, “Atoms for Peace” Speech, 1953. Available at
  40. 81.
    Price-Anderson Amendments Act of 2005. Available at
  41. 82.
    Profile—John Garrick: nuclear risk assessment pioneer. Risk Anal. 29, 935–939 (2009) Google Scholar
  42. 83.
    A. Rip, The mutual dependence of risk research and political context. Sci. Technol. Stud. 4, 3–15 (2001) Google Scholar
  43. 84.
    G.A. Ritter, Der Sozialstaat: Entstehung und Entwicklung im internationalen Vergleich (Oldenbourg, München, 1991) Google Scholar
  44. 85.
    C.A. Rosenberg, The Cholera Years: The United States in 1832, 1849, and 1866 (University of Chicago Press, Chicago, 1962) Google Scholar
  45. 86.
    N. Rosenberg, The direction of technological change: inducement. Mechanisms and focusing devices. Econ. Dev. Cult. Change 18, 1–24 (1969) CrossRefGoogle Scholar
  46. 87.
    T. Schlich, Einführung. Die Kontrolle notwendiger Krankheitsursachen als Strategie der Krankheitsbeherrschung im 19. und 20. Jahrhundert, in Strategien der Kausalität: Konzepte der Krankheitsverursachung im 19. und 20. Jahrhundert, ed. by C. Gradmann, T. Schlich (Centaurus, Pfaffenweiler, 1999), pp. 3–28 Google Scholar
  47. 88.
    H. Schulz, O. Basler (eds.), Deutsches Fremdwörterbuch (Walter de Gruyter, Berlin, 1977), p. 452 Google Scholar
  48. 89.
    B. Sinclair, Philadelphia’s Philosopher Mechanics: A History of the Franklin Institute, 1824–1865 (Johns Hopkins University Press, Baltimore, 1974) Google Scholar
  49. 90.
    B. Sinclair, A Centennial History of the American Society of Mechanical Engineers (University of Toronto Press, Toronto, 1980) Google Scholar
  50. 91.
    D.F. Smith, J. Phillips (eds.), Food, Science, Policy and Regulation in the Twentieth Century: International and Comparative Perspectives (Routledge, New York, 2000) Google Scholar
  51. 92.
    W.H. Sperber, R.F. Stier, Happy 50th birthday to HACCP: retrospective and prospective. Food Saf. Mag. (December 2009/January 2010). Available at
  52. 93.
    U. Spiekermann, Redefining food: the standardization of products and the production in Europe and the United States, 1880–1914. Hist. Technol. 27, 11–36 (2001) CrossRefGoogle Scholar
  53. 94.
    J.E. Stott, P.T. Britton, R.W. Ring, F. Hark, G.S. Hatfield, Common cause failure modeling: aerospace vs nuclear (2010). Available at
  54. 95.
    T. Tietjen, D.H. Müller, FMEA Praxis. Das Komplettpaket für Training und Anwendung (Hanser, München, 2003), pp. 4–5 Google Scholar
  55. 96.
    S. Walker, US Nuclear Regulatory Commission, A Short History of Nuclear Regulation, 1946–1999 (US Nuclear Regulatory Commission, Washington, 2000), pp. 41–42 Google Scholar
  56. 97.
    A.M. Weinberg, Science and trans-science. Minerva 10, 209–222 (1972) CrossRefGoogle Scholar
  57. 98.
    A.M. Weinberg, Reflections on risk assessment. Risk Anal. 1, 5–7 (1981) CrossRefGoogle Scholar
  58. 99.
    R. Williams, Keywords: A Vocabulary of Culture and Society (Oxford University Press, New York, 1983) Google Scholar
  59. 100.
    A.S. Wohl, Endangered Lives: Public Health in Victorian Britain (Harvard University Press, Cambridge, 1983) Google Scholar
  60. 101.
    K. Zachmann, Grenzenlose Machbarkeit und unbegrenzte Haltbarkeit? Das „friedliche Atom“ im Dienst der Land- und Ernährungswirtschaft. Technikgeschichte 78, 231–253 (2003) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.History of Technology, Munich Center for Technology in SocietyTechnische Universität MünchenMunichGermany

Personalised recommendations