Skip to main content

Numerical Modeling of Flow and Heat Transfer in a Turbulent Gas-Droplets Boundary Layer

  • Chapter
  • First Online:
Flow and Heat and Mass Transfer in Laminar and Turbulent Mist Gas-Droplets Stream over a Flat Plate

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSMUFLO))

  • 962 Accesses

Abstract

Wall-bounded turbulent gas-droplets flows with phase changes employ very often in a vide range of industrial processes. The addition of the particulate phase to the already complicated turbulent flow substantially increased the description of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • X.Q. Chen, Heavy particles dispersion in inhomogeneous, anisotropic turbulent flows. Int. J. Multiphase Flow 26, 635–661 (2000)

    Article  MATH  Google Scholar 

  • R. Clift, J.R. Grace, M.E. Weber, Bubbles, Drops and Particles. (Academic Press, New York, 1978)

    Google Scholar 

  • C.T. Crowe, M. Sommerfeld, T. Tsuji, Fundamentals of Gas-Particle and Gas-Droplet Flows (CRC Press, Boca Raton, 1998)

    Google Scholar 

  • I.V. Derevich, The hydrodynamics and heat transfer and mass transfer of particles under conditions of turbulent flow of gas suspension in a pipe and in an axisymmetric jet. High Temp. 40, 78–91 (2002)

    Article  Google Scholar 

  • I.V. Derevich, L.I. Zaichik, Particle deposition from a turbulent flow. Fluid Dyn. 23, 722–729 (1988)

    Article  MATH  Google Scholar 

  • D.A. Drew, Mathematical modeling of two-phase flow. Ann. Rev. Fluid Mech. 15, 261–291 (1983)

    Article  Google Scholar 

  • D.P. Healy, J.B. Young, Full Lagrangian methods for calculating particle concentration fields in dilute gas-particle flows. Proc. Royal Society A. 461, 2197–2225 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • C.B. Hwang, C.A. Lin, Improved low-Reynolds-number k− \(\tilde\varepsilon\) model based on direct simulation data. AIAA J. 36, 38–43 (1998)

    Google Scholar 

  • M. Ishii, Thermo-Fluid Theory of Two-Phase Flows (Eyrolles, Paris, 1975)

    Google Scholar 

  • W.P. Jones, B.E. Launder, The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence. Int. J. Heat Mass Transfer 15, 1119–1130 (1973)

    Article  Google Scholar 

  • S.S. Kutateladze, A.I. Leont’ev, Heat and Mass Transfer in Turbulent Boundary Layer. (Hemisphere, New York, 1989)

    Google Scholar 

  • B.P. Leonard, A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comp. Methods Appl. Mech. Eng. 19, 59–98 (1979)

    Article  MATH  Google Scholar 

  • C. Marchioli, M. Picciotto, A. Soldati, Influence of gravity and lift on particle velocity statistics and transfer rates in turbulent vertical channel flow. Intl J. Multiphase Flow 33, 25–227 (2007)

    Article  Google Scholar 

  • H.K. Myong, N. Kasagi, A new approach to the improvement of k-ε turbulence model for wall-bounded shear flows. Int. J. JSME. Ser. II 33, 63–72 (1990)

    Google Scholar 

  • A.N. Osiptsov, Lagrangian modeling of dust admixture in gas flows. Astrophys. Space Sci. 274, 377–386 (2000)

    Article  MATH  Google Scholar 

  • M.A. Pakhomov, V.I. Terekhov, Enhancement of an impingement heat transfer between turbulent mist jet and flat surface. Int. J. Heat Mass Transfer 53, 3156–3165 (2010)

    Article  MATH  Google Scholar 

  • M.A. Pakhomov, V.I. Terekhov, Modeling of the flow structure and heat transfer in a gas-droplet turbulent boundary layer. Fluid Dyn. 47, 168–177 (2012)

    Article  MATH  Google Scholar 

  • M.A. Pakhomov, M.V. Protasov, V.I. Terekhov, AYu. Varaksin, Experimental and numerical investigation of downward gas-dispersed turbulent pipe flow. Int. J. Heat Mass Transfer 50, 2107–2116 (2007)

    Article  MATH  Google Scholar 

  • S.V. Patankar, Numerical Heat Transfer and Fluid Flow. (Hemisphere, Washington, 1980)

    Google Scholar 

  • C.B. Rogers, J.K. Eaton, The behavior of small particles in a vertical turbulent boundary layer in air. Int. J. Multiphase Flow 16, 819–834 (1990)

    Article  MATH  Google Scholar 

  • H. Schlichting, Boundary Layer Theory. (McGraw-Hill Publishing House, New York, 1960)

    Google Scholar 

  • V.I. Terekhov, M.A. Pakhomov, Numerical study of heat transfer in a laminar mist flow over an isothermal flat plate. Int. J. Heat Mass Transfer 45, 2077–2085 (2002)

    Article  MATH  Google Scholar 

  • V.I. Terekhov, M.A. Pakhomov, Numerical simulation of hydrodynamics and convective heat transfer in turbulent tube mist flow. Int. J. Heat Mass Transfer 46, 1503–1517 (2003)

    Article  MATH  Google Scholar 

  • V.I. Terekhov, M.A. Pakhomov, Film-cooling enhancement of the mist vertical wall jet on the cylindrical channel surface with heat transfer. Trans. ASME J. Heat Transfer 131, Paper 062201 (2009a)

    Google Scholar 

  • V.I. Terekhov, M.A. Pakhomov, Predictions of turbulent flow and heat transfer in gas-droplets flow downstream of a sudden pipe expansion. Int. J. Heat Mass Transfer 52, 4711–4721 (2009b)

    Article  MATH  Google Scholar 

  • V.I. Terekhov, M.A. Pakhomov, A.V. Chichindaev, Effect of evaporation of liquid droplets on the distribution of parameters in a two-species laminar flow. J. Appl. Mech. Techn. Phys. 41, 1020–1028 (2000)

    Article  Google Scholar 

  • V.I. Terekhov, M.A. Pakhomov, K.A. Sharov, N.E. Shishkin, The thermal efficiency of near-wall gas-droplets screens. II. Experimental study and comparison with numerical results. Int. J. Heat Mass Transfer 48, 1760–1771 (2005)

    Article  Google Scholar 

  • J.P. Van Doormaal, G.D. Raithby, Enhancements of the SIMPLE method for predicting incompressible fluid flow. Int. J. Numerical Heat Transfer A 7, 147–164 (1984)

    MATH  Google Scholar 

  • A.Yu. Varaksin, Turbulent Particles-Laden Gas Flows (Springer, Berlin, 2007)

    Book  Google Scholar 

  • J. Wang, E.K. Levy, Particle behavior in the turbulent boundary layer of a dilute gas-particle flow past a flat plate. Int. J. Exp. Fluid Sci. 30, 473–483 (2006)

    Article  Google Scholar 

  • L.I. Zaichik, A statistical model of particle transport and heat transfer in turbulent shear flows. Phys. Fluids A 11, 1521–1534 (1999)

    Article  MATH  Google Scholar 

  • L.I. Zaichik, V.M. Alipchenkov, E.G. Sinaiski, Particles in Turbulent Flows (Wiley-VCH, Berlin, 2008)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor I. Terekhov .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Terekhov, V.I., Pakhomov, M.A. (2014). Numerical Modeling of Flow and Heat Transfer in a Turbulent Gas-Droplets Boundary Layer. In: Flow and Heat and Mass Transfer in Laminar and Turbulent Mist Gas-Droplets Stream over a Flat Plate. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-04453-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04453-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04452-1

  • Online ISBN: 978-3-319-04453-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics