Skip to main content

Extreme Value Time Series

  • Chapter
  • First Online:
Climate Time Series Analysis

Part of the book series: Atmospheric and Oceanographic Sciences Library ((ATSL,volume 51))

Abstract

Extreme value time series refer to the outlier component in the climate equation (Eq. 1.2). Quantifying the tail probability of the PDF of a climate variable—the risk of climate extremes—is of high socioeconomical relevance. In the context of climate change, it is important to move from stationary to nonstationary (time-dependent) models: with climate changes also risk changes may be associated.

Traditionally, extreme value data are evaluated in two forms: first, block extremes such as annual maxima, and, second, exceedances of a high threshold. A stationary model of great flexibility for the first and the second form is the Generalized Extreme Value distribution and the generalized Pareto distribution, respectively. Classical estimation techniques based on maximum likelihood exist for both distributions.

Nonstationary models can be constructed parametrically, by writing the extreme value models with time-dependent parameters. Maximum likelihood estimation may impose numerical challenges here. The inhomogeneous Poisson process constitutes an interesting nonparametric model of the time-dependence of the occurrence of an extreme. Here, bootstrap confidence bands can be constructed and hypothesis tests performed to assess the significance of trends in climate risk. A recent development is a hybrid, which estimates the time-dependence nonparametrically and, conditional on the occurrence of an extreme, models the extreme value parametrically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abram NJ, Gagan MK, Cole JE, Hantoro WS, Mudelsee M (2008) Recent intensification of tropical climate variability in the Indian Ocean. Nature Geoscience 1(12): 849–853

    Google Scholar 

  • Abramowitz M, Stegun IA (Eds) (1965) Handbook of Mathematical Functions. Dover, New York, 1046pp

    Google Scholar 

  • Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Rupa Kumar K, Revadekar J, Griffiths G, Vincent L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research 111(D5): D05109. [doi:10.1029/2005JD006290]

    Google Scholar 

  • Allamano P, Claps P, Laio F (2009) Global warming increases flood risk in mountainous areas. Geophysical Research Letters 36(24): L24404. [doi:10.1029/2009GL041395]

    Google Scholar 

  • Ammann CM, Naveau P (2003) Statistical analysis of tropical explosive volcanism occurrences over the last 6 centuries. Geophysical Research Letters 30(5): 1210. [doi:10.1029/2002GL016388]

    Google Scholar 

  • Angus JE (1993) Asymptotic theory for bootstrapping the extremes. Communications in Statistics—Theory and Methods 22(1): 15–30

    Google Scholar 

  • Becker A, Grünewald U (2003) Flood risk in central Europe. Science 300(5622): 1099

    Google Scholar 

  • Beirlant J, Goegebeur Y, Teugels J, Segers J (2004) Statistics of Extremes: Theory and Applications. Wiley, Chichester, 490pp

    Google Scholar 

  • Beirlant J, Teugels JL, Vynckier P (1996) Practical Analysis of Extreme Values. Leuven University Press, Leuven, 137pp

    Google Scholar 

  • Bengtsson L, Botzet M, Esch M (1996) Will greenhouse gas-induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus, Series A 48(1): 57–73

    Google Scholar 

  • Beniston M (2004) The 2003 heat wave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophysical Research Letters 31(2): L02202. [doi:10.1029/2003GL018857]

    Google Scholar 

  • Berman SM (1964) Limit theorems for the maximum term in stationary sequences. Annals of Mathematical Statistics 35(2): 502–516

    Google Scholar 

  • Besonen MR, Bradley RS, Mudelsee M, Abbott MB, Francus P (2008) A 1,000-year, annually-resolved record of hurricane activity from Boston, Massachusetts. Geophysical Research Letters 35(14): L14705. [doi:10.1029/2008GL033950]

    Google Scholar 

  • Bickel PJ, Freedman DA (1981) Some asymptotic theory for the bootstrap. The Annals of Statistics 9(6): 1196–1217

    Google Scholar 

  • Brázdil R, Glaser R, Pfister C, Dobrovolný P, Antoine J-M, Barriendos M, Camuffo D, Deutsch M, Enzi S, Guidoboni E, Kotyza O, Rodrigo FS (1999) Flood events of selected European rivers in the sixteenth century. Climatic Change 43(1): 239–285

    Google Scholar 

  • Brooks MM, Marron JS (1991) Asymptotic optimality of the least-squares cross-validation bandwidth for kernel estimates of intensity functions. Stochastic Processes and their Applications 38(1): 157–165

    Google Scholar 

  • Buishand TA (1989) Statistics of extremes in climatology. Statistica Neerlandica 43(1): 1–30

    Google Scholar 

  • Bundesanstalt für Gewässerkunde (2013) Juni-Hochwasser 2013 in Deutschland: 17. Juni 2013. Bundesanstalt für Gewässerkunde, Koblenz, 3pp. [http://www.bafg.de/DE/07_Aktuell/20130617_15_hochwasser_download.pdf?__blob=publicationFile (9 November 2013)]

  • Butler A, Heffernan JE, Tawn JA, Flather RA (2007) Trend estimation in extremes of synthetic North Sea surges. Applied Statistics 56(4): 395–414

    Google Scholar 

  • Caers J, Beirlant J, Maes MA (1999a) Statistics for modeling heavy tailed distributions in geology: Part I. Methodology. Mathematical Geology 31(4): 391–410

    Google Scholar 

  • Caers J, Beirlant J, Maes MA (1999b) Statistics for modeling heavy tailed distributions in geology: Part II. Application. Mathematical Geology 31(4): 411–434

    Google Scholar 

  • Castillo E, Hadi AS (1997) Fitting the generalized Pareto distribution to data. Journal of the American Statistical Association 92(440): 1609–1620

    Google Scholar 

  • Chang EKM, Guo Y (2007) Is the number of North Atlantic tropical cyclones significantly underestimated prior to the availability of satellite observations? Geophysical Research Letters 34(14): L14801. [doi:10.1029/2007GL030169]

    Google Scholar 

  • Chavez-Demoulin V, Davison AC (2005) Generalized additive modelling of sample extremes. Applied Statistics 54(1): 207–222

    Google Scholar 

  • Clarke RT (1994) Statistical Modelling in Hydrology. Wiley, Chichester, 412pp

    Google Scholar 

  • Coles S (2001a) Improving the analysis of extreme wind speeds with information-sharing models. Institut Pierre Simon Laplace des Sciences de l’Environnement Global, Notes des Activitês Instrumentales 11: 23–34

    Google Scholar 

  • Coles S (2001b) An Introduction to Statistical Modeling of Extreme Values. Springer, London, 208pp

    Google Scholar 

  • Coles S (2004) The use and misuse of extreme value models in practice. In: Finkenstädt B, Rootzén H (Eds) Extreme Values in Finance, Telecommunications, and the Environment. Chapman and Hall, Boca Raton, FL, pp 79–100

    Google Scholar 

  • Coles S, Pericchi L (2003) Anticipating catastrophes through extreme value modelling. Applied Statistics 52(4): 405–416

    Google Scholar 

  • Cooley D, Nychka D, Naveau P (2007) Bayesian spatial modeling of extreme precipitation return levels. Journal of the American Statistical Association 102(479): 824–840

    Google Scholar 

  • Cowling A, Hall P (1996) On pseudodata methods for removing boundary effects in kernel density estimation. Journal of the Royal Statistical Society, Series B 58(3): 551–563

    Google Scholar 

  • Cowling A, Hall P, Phillips MJ (1996) Bootstrap confidence regions for the intensity of a Poisson point process. Journal of the American Statistical Association 91(436): 1516–1524

    Google Scholar 

  • Cowling AM (1995) Some problems in kernel curve estimation. Ph.D. Dissertation. Australian National University, Canberra, 130pp

    Google Scholar 

  • Cox DR, Isham V (1980) Point Processes. Chapman and Hall, London, 188pp

    Google Scholar 

  • Cox DR, Isham VS, Northrop PJ (2002) Floods: Some probabilistic and statistical approaches. Philosophical Transactions of the Royal Society of London, Series A 360(1796): 1389–1408

    Google Scholar 

  • Cox DR, Lewis PAW (1966) The Statistical Analysis of Series of Events. Methuen, London, 285pp

    Google Scholar 

  • Cramér H (1946) Mathematical Methods of Statistics. Princeton University Press, Princeton, 575pp

    Google Scholar 

  • Cutter SL, Emrich C (2005) Are natural hazards and disaster losses in the U.S. increasing? Eos, Transactions of the American Geophysical Union 86(41): 381, 389

    Google Scholar 

  • Dargahi-Noubary GR (1989) On tail estimation: An improved method. Mathematical Geology 21(8): 829–842

    Google Scholar 

  • Davison AC, Ramesh NI (2000) Local likelihood smoothing of sample extremes. Journal of the Royal Statistical Society, Series B 62(1): 191–208

    Google Scholar 

  • Davison AC, Smith RL (1990) Models for exceedances over high thresholds (with discussion). Journal of the Royal Statistical Society, Series B 52(3): 393–442

    Google Scholar 

  • Della-Marta PM, Haylock MR, Luterbacher J, Wanner H (2007) Doubled length of western European summer heat waves since 1880. Journal of Geophysical Research 112(D15): D15103. [doi:10.1029/2007JD008510]

    Google Scholar 

  • Diggle P (1985) A kernel method for smoothing point process data. Applied Statistics 34(2): 138–147

    Google Scholar 

  • Diggle P, Marron JS (1988) Equivalence of smoothing parameter selectors in density and intensity estimation. Journal of the American Statistical Association 83(403): 793–800

    Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: Observations, modeling, and impacts. Science 289(5487): 2068–2074

    Google Scholar 

  • Eastoe EF, Tawn JA (2009) Modelling non-stationary extremes with application to surface level ozone. Applied Statistics 58(1): 25–45

    Google Scholar 

  • Efron B, Hinkley DV (1978) Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher information (with discussion). Biometrika 65(3): 457–487

    Google Scholar 

  • Efron B, Tibshirani RJ (1993) An Introduction to the Bootstrap. Chapman and Hall, London, 436pp

    Google Scholar 

  • El-Aroui M-A, Diebolt J (2002) On the use of the peaks over thresholds method for estimating out-of-sample quantiles. Computational Statistics and Data Analysis 39(4): 453–475

    Google Scholar 

  • Elsner JB (2006) Evidence in support of the climate change–Atlantic hurricane hypothesis. Geophysical Research Letters 33(16): L16705. [doi:10.1029/2006GL026869]

    Google Scholar 

  • Elsner JB, Kara AB (1999) Hurricanes of the North Atlantic: Climate and Society. Oxford University Press, New York, 488pp

    Google Scholar 

  • Elsner JB, Kara AB, Owens MA (1999) Fluctuations in North Atlantic hurricane frequency. Journal of Climate 12(2): 427–437

    Google Scholar 

  • Elsner JB, Kossin JP, Jagger TH (2008) The increasing intensity of the strongest tropical cyclones. Nature 455(7208): 92–95

    Google Scholar 

  • Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436(7051): 686–688

    Google Scholar 

  • Emanuel KA (1987) The dependence of hurricane intensity on climate. Nature 326(6112): 483–485

    Google Scholar 

  • Emanuel KA (1999) Thermodynamic control of hurricane intensity. Nature 401(6754): 665–669

    Google Scholar 

  • Embrechts P, Klüppelberg C, Mikosch T (1997) Modelling Extremal Events for Insurance and Finance. Springer, Berlin, 648pp

    Google Scholar 

  • Engel H, Krahé P, Nicodemus U, Heininger P, Pelzer J, Disse M, Wilke K (2002) Das Augusthochwasser 2002 im Elbegebiet. Bundesanstalt für Gewässerkunde, Koblenz, 48pp

    Google Scholar 

  • Fawcett L, Walshaw D (2006) A hierarchical model for extreme wind speeds. Applied Statistics 55(5): 631–646

    Google Scholar 

  • Fawcett L, Walshaw D (2007) Improved estimation for temporally clustered extremes. Environmetrics 18(1–2): 173–188

    Google Scholar 

  • Ferreira A, de Haan L, Peng L (2003) On optimising the estimation of high quantiles of a probability distribution. Statistics 37(5): 401–434

    Google Scholar 

  • Ferro CAT, Segers J (2003) Inference for clusters of extreme values. Journal of the Royal Statistical Society, Series B 65(2): 545–556

    Google Scholar 

  • Fischer H (1997) Räumliche Variabilität in Eiskernzeitreihen Nordostgrönlands. Ph.D. Dissertation. University of Heidelberg, Heidelberg, 188pp

    Google Scholar 

  • Fischer K (1907) Die Sommerhochwasser der Oder von 1813 bis 1903. Jahrbuch für die Gewässerkunde Norddeutschlands, Besondere Mitteilungen 1(6): 1–101

    Google Scholar 

  • Fisher RA, Tippett LHC (1928) Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proceedings of the Cambridge Philosophical Society 24(2): 180–190

    Google Scholar 

  • Fleitmann D, Dunbar RB, McCulloch M, Mudelsee M, Vuille M, McClanahan TR, Cole JE, Eggins S (2007b) East African soil erosion recorded in a 300 year old coral colony from Kenya. Geophysical Research Letters 34(4): L04401. [doi:10.1029/2006GL028525]

    Google Scholar 

  • Fréchet M (1927) Sur la loi probabilité de l’écart maximum. Annales de la Société Polonaise de Mathématique 6: 93–116

    Google Scholar 

  • Frei C, Schär C (2001) Detection probability of trends in rare events: Theory and application to heavy precipitation in the Alpine region. Journal of Climate 14(7): 1568–1584

    Google Scholar 

  • Galambos J (1978) The Asymptotic Theory of Extreme Order Statistics. Wiley, New York, 352pp

    Google Scholar 

  • Gardenier JS, Gardenier TK (1988) Statistics of risk management. In: Kotz S, Johnson NL, Read CB (Eds) Encyclopedia of Statistical Sciences, volume 8. Wiley, New York, pp 141–148

    Google Scholar 

  • Gasser T, Müller H-G (1979) Kernel estimation of regression functions. In: Gasser T, Rosenblatt M (Eds) Smoothing Techniques for Curve Estimation. Springer, Berlin, pp 23–68

    Google Scholar 

  • Gençay R, Selçuk F, Ulugülyaǧci A (2001) EVIM: A software package for extreme value analysis in MATLAB. Studies in Nonlinear Dynamics & Econometrics 5(3): 213–239

    Google Scholar 

  • Ghil M, Yiou P, Hallegatte S, Malamud BD, Naveau P, Soloviev A, Friederichs P, Keilis-Borok V, Kondrashov D, Kossobokov V, Mestre O, Nicolis C, Rust HW, Shebalin P, Vrac M, Witt A, Zaliapin I (2011) Extreme events: Dynamics, statistics and prediction. Nonlinear Processes in Geophysics 18(3): 295–350

    Google Scholar 

  • Gilleland E, Katz RW (2011) New software to analyze how extremes change over time. Eos, Transactions of the American Geophysical Union 92(2): 13–14

    Google Scholar 

  • Girardin MP, Bergeron Y, Tardif JC, Gauthier S, Flannigan MD, Mudelsee M (2006b) A 229-year dendroclimatic-inferred record of forest fire activity for the Boreal Shield of Canada. International Journal of Wildland Fire 15(3): 375–388

    Google Scholar 

  • Girardin MP, Mudelsee M (2008) Past and future changes in Canadian boreal wildfire activity. Ecological Applications 18(2): 391–406

    Google Scholar 

  • Gnedenko B (1943) Sur la distribution limite du terme maximum d’une série aléatoire. Annals of Mathematics 44(3): 423–453. [English translation in: Kotz S, Johnson NL (Eds) (1992) Breakthroughs in Statistics, volume 1. Springer, New York, pp 195–225]

    Google Scholar 

  • Goldenberg SB, Landsea CW, Mestas-Nuñez AM, Gray WM (2001) The recent increase in Atlantic hurricane activity: Causes and implications. Science 293(5529): 474–479

    Google Scholar 

  • Greenwood JA, Landwehr JM, Matalas NC, Wallis JR (1979) Probability weighted moments: Definition and relation to parameters of several distributions expressable in inverse form. Water Resources Research 15(5): 1049–1054

    Google Scholar 

  • Grinsted A, Moore JC, Jevrejeva S (2013) Projected Atlantic hurricane surge threat from rising temperatures. Proceedings of the National Academy of Sciences of the United States of America 110(14): 5369–5373

    Google Scholar 

  • Grünewald U, Chmielewski R, Kaltofen M, Rolland W, Schümberg S, Ahlheim M, Sauer T, Wagner R, Schluchter W, Birkner H, Petzold R, Radczuk L, Eliasiewicz R, Bjarsch B, Paus L, Zahn G (1998) Ursachen, Verlauf und Folgen des Sommer-Hochwassers 1997 an der Oder sowie Aussagen zu bestehenden Risikopotentialen. Eine interdisziplinäre Studie — Langfassung. Deutsches IDNDR-Komitee für Katastrophenvorbeugung e.V., Bonn, 187pp

    Google Scholar 

  • Grünewald U, Kaltofen M, Schümberg S, Merz B, Kreibich H, Petrow T, Thieken A, Streitz W, Dombrowsky WR (2003) Hochwasservorsorge in Deutschland: Lernen aus der Katastrophe 2002 im Elbegebiet. Deutsches Komitee für Katastrophenvorsorge, Bonn, 144pp. [Schriftenreihe des DKKV 29]

    Google Scholar 

  • Gumbel EJ (1958) Statistics of Extremes. Columbia University Press, New York, 375pp

    Google Scholar 

  • Hall P, Peng L, Tajvidi N (2002) Effect of extrapolation on coverage accuracy of prediction intervals computed from Pareto-type data. The Annals of Statistics 30(3): 875–895

    Google Scholar 

  • Hall P, Tajvidi N (2000) Nonparametric analysis of temporal trend when fitting parametric models to extreme-value data. Statistical Science 15(2): 153–167

    Google Scholar 

  • Hall P, Weissman I (1997) On the estimation of extreme tail probabilities. The Annals of Statistics 25(3): 1311–1326

    Google Scholar 

  • Hewa GA, Wang QJ, McMahon TA, Nathan RJ, Peel MC (2007) Generalized extreme value distribution fitted by LH moments for low-flow frequency analysis. Water Resources Research 43(6): W06301. [doi:10.1029/2006WR004913]

    Google Scholar 

  • Hill BM (1975) A simple general approach to inference about the tail of a distribution. The Annals of Statistics 3(5): 1163–1174

    Google Scholar 

  • Holland GJ (2007) Misuse of landfall as a proxy for Atlantic tropical cyclone activity. Eos, Transactions of the American Geophysical Union 88(36): 349–350

    Google Scholar 

  • Hosking JRM (1985) Maximum-likelihood estimation of the parameters of the generalized extreme-value distribution. Applied Statistics 34(3): 301–310

    Google Scholar 

  • Hosking JRM (1990) L-moments: Analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society, Series B 52(1): 105–124

    Google Scholar 

  • Hosking JRM, Wallis JR (1987) Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 29(3): 339–349

    Google Scholar 

  • Hosking JRM, Wallis JR (1997) Regional Frequency Analysis: An Approach Based on L-Moments. Cambridge University Press, Cambridge, 224pp

    Google Scholar 

  • Hosking JRM, Wallis JR, Wood EF (1985) Estimation of the generalized extreme value distribution by the method of probability-weighted moments. Technometrics 27(3): 251–261

    Google Scholar 

  • Jenkinson AF (1955) The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Quarterly Journal of the Royal Meteorological Society 81(348): 158–171

    Google Scholar 

  • Johnson NL, Kotz S, Balakrishnan N (1994) Continuous Univariate Distributions, volume 1. Second edition. Wiley, New York, 756pp

    Google Scholar 

  • Johnson NL, Kotz S, Balakrishnan N (1995) Continuous Univariate Distributions, volume 2. Second edition. Wiley, New York, 719pp

    Google Scholar 

  • Jones MC, Lotwick HW (1984) A remark on algorithm AS 176. Kernel density estimation using the Fast Fourier Transform. Applied Statistics 33(1): 120–122

    Google Scholar 

  • Kallache M (2007) Trends and Extreme Values of River Discharge Time Series. Ph.D. Dissertation. University of Bayreuth, Bayreuth, 125pp

    Google Scholar 

  • Kallache M, Vrac M, Naveau P, Michelangeli P-A (2011) Nonstationary probabilistic downscaling of extreme precipitation. Journal of Geophysical Research 116(D5): D05113. [doi:10.1029/2010JD014892]

    Google Scholar 

  • Karr AF (1986) Point Processes and Their Statistical Inference. Marcel Dekker, New York, 490pp

    Google Scholar 

  • Katz RW, Parlange MB, Naveau P (2002) Statistics of extremes in hydrology. Advances in Water Resources 25(8–12): 1287–1304

    Google Scholar 

  • Keigwin LD (1996) The Little Ice Age and Medieval Warm Period in the Sargasso Sea. Science 274(5292): 1504–1508

    Google Scholar 

  • Khaliq MN, Ouarda TBMJ, Ondo J-C, Gachon P, Bobée B (2006) Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: A review. Journal of Hydrology 329(3–4): 534–552

    Google Scholar 

  • Khaliq MN, St-Hilaire A, Ouarda TBMJ, Bobée B (2005) Frequency analysis and temporal pattern of occurrences of southern Quebec heatwaves. International Journal of Climatology 25(4): 485–504

    Google Scholar 

  • Kharin VV, Zwiers FW (2005) Estimating extremes in transient climate change simulations. Journal of Climate 18(8): 1156–1173

    Google Scholar 

  • Klein Tank AMG, Zwiers FW, Zhang X (2009) Guidelines on Analysis of Extremes in a Changing Climate in Support of Informed Decisions for Adaptation. World Meteorological Organization, Geneva, 52pp. [World Climate Data and Monitoring Programme Report 72]

    Google Scholar 

  • Klotzbach PJ, Gray WM (2008) Multidecadal variability in North Atlantic tropical cyclone activity. Journal of Climate 21(15): 3929–3935

    Google Scholar 

  • Knutson TR, McBride JL, Chan J, Emanuel K, Holland G, Landsea C, Held I, Kossin JP, Srivastava AK, Sugi M (2010) Tropical cyclones and climate change. Nature Geoscience 3(3): 157–163

    Google Scholar 

  • Kotz S, Nadarajah S (2000) Extreme Value Distributions: Theory and Applications. Imperial College Press, London, 187pp

    Google Scholar 

  • Kullback S (1983) Fisher information. In: Kotz S, Johnson NL, Read CB (Eds) Encyclopedia of Statistical Sciences, volume 3. Wiley, New York, pp 115–118

    Google Scholar 

  • Kürbis K, Mudelsee M, Tetzlaff G, Brázdil R (2009) Trends in extremes of temperature, dew point, and precipitation from long instrumental series from central Europe. Theoretical and Applied Climatology 98(1–2): 187–195

    Google Scholar 

  • Kyselý J (2002) Temporal fluctuations in heat waves at Prague–Klementinum, the Czech Republic, from 1901–97, and their relationships to atmospheric circulation. International Journal of Climatology 22(1): 33–50

    Google Scholar 

  • Kyselý J (2008) A cautionary note on the use of nonparametric bootstrap for estimating uncertainties in extreme-value models. Journal of Applied Meteorology and Climatology 47(12): 3236–3251

    Google Scholar 

  • Landsea CW (1993) A climatology of intense (or major) Atlantic hurricanes. Monthly Weather Review 121(6): 1703–1713

    Google Scholar 

  • Landsea CW (2007) Counting Atlantic tropical cyclones back to 1900. Eos, Transactions of the American Geophysical Union 88(18): 197, 202

    Google Scholar 

  • Landsea CW, Glenn DA, Bredemeyer W, Chenoweth M, Ellis R, Gamache J, Hufstetler L, Mock C, Perez R, Prieto R, Sánchez-Sesma J, Thomas D, Woolcock L (2008) A reanalysis of the 1911–20 Atlantic hurricane database. Journal of Climate 21(10): 2138–2168

    Google Scholar 

  • Landsea CW, Nicholls N, Gray WM, Avila LA (1996) Downward trends in the frequency of intense Atlantic hurricanes during the past five decades. Geophysical Research Letters 23(13): 1697–1700

    Google Scholar 

  • Landsea CW, Nicholls N, Gray WM, Avila LA (1997) Reply. Geophysical Research Letters 24(17): 2205

    Google Scholar 

  • Landsea CW, Pielke Jr RA, Mestas-Nuñez AM, Knaff JA (1999) Atlantic basin hurricanes: Indices of climatic changes. Climatic Change 42(1): 89–129

    Google Scholar 

  • Landsea CW, Vecchi GA, Bengtsson L, Knutson TR (2010) Impact of duration thresholds on Atlantic tropical cyclone counts. Journal of Climate 23(10): 2508–2519

    Google Scholar 

  • Landwehr JM, Matalas NC, Wallis JR (1979) Probability weighted moments compared with some traditional techniques in estimating Gumbel parameters and quantiles. Water Resources Research 15(5): 1055–1064

    Google Scholar 

  • Lang M, Ouarda TBMJ, Bobée B (1999) Towards operational guidelines for over-threshold modeling. Journal of Hydrology 225(3–4): 103–117

    Google Scholar 

  • Leadbetter MR, Lindgren G, Rootzén H (1983) Extremes and Related Properties of Random Sequences and Processes. Springer, New York, 336pp

    Google Scholar 

  • Leadbetter MR, Rootzén H (1988) Extremal theory for stochastic processes. The Annals of Probability 16(2): 431–478

    Google Scholar 

  • Ledford AW, Tawn JA (2003) Diagnostics for dependence within time series extremes. Journal of the Royal Statistical Society, Series B 65(2): 521–543

    Google Scholar 

  • Loader CR (1992) A log-linear model for a Poisson process change point. The Annals of Statistics 20(3): 1391–1411

    Google Scholar 

  • Lu L-H, Stedinger JR (1992) Variance of two- and three-parameter GEV/PWM quantile estimators: Formulae, confidence intervals, and a comparison. Journal of Hydrology 138(1–2): 247–267

    Google Scholar 

  • Luterbacher J, Rickli R, Xoplaki E, Tinguely C, Beck C, Pfister C, Wanner H (2001) The late Maunder Minimum (1675–1715)—A key period for studying decadal scale climatic change in Europe. Climatic Change 49(4): 441–462

    Google Scholar 

  • Macleod AJ (1989) A remark on algorithm AS 215: Maximum-likelihood estimation of the parameters of the generalized extreme-value distribution. Applied Statistics 38(1): 198–199

    Google Scholar 

  • Mann ME, Emanuel KA (2006) Atlantic hurricane trends linked to climate change. Eos, Transactions of the American Geophysical Union 87(24): 233, 238, 241

    Google Scholar 

  • Mann ME, Emanuel KA, Holland GJ, Webster PJ (2007a) Atlantic tropical cyclones revisited. Eos, Transactions of the American Geophysical Union 88(36): 349–350

    Google Scholar 

  • Mann ME, Sabbatelli TA, Neu U (2007b) Evidence for a modest undercount bias in early historical Atlantic tropical cyclone counts. Geophysical Research Letters 34(22): L22707. [doi:10.1029/2007GL031781; corrigendum: 2007 Vol. 34(24): L24704 (doi:10.1029/2007GL032798)]

    Google Scholar 

  • Mann ME, Woodruff JD, Donnelly JP, Zhang Z (2009) Atlantic hurricanes and climate over the past 1,500 years. Nature 460(7257): 880–883

    Google Scholar 

  • Martins ES, Stedinger JR (2000) Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resources Research 36(3): 737–744

    Google Scholar 

  • Martins ES, Stedinger JR (2001) Generalized maximum likelihood Pareto–Poisson estimators for partial duration series. Water Resources Research 37(10): 2551–2557

    Google Scholar 

  • Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305(5686): 994–997

    Google Scholar 

  • Meehl GA, Zwiers F, Evans J, Knutson T, Mearns L, Whetton P (2000) Trends in extreme weather and climate events: Issues related to modeling extremes in projections of future climate change. Bulletin of the American Meteorological Society 81(3): 427–436

    Google Scholar 

  • Michener WK, Blood ER, Bildstein KL, Brinson MM, Gardner LR (1997) Climate change, hurricanes and tropical storms, and rising sea level in coastal wetlands. Ecological Applications 7(3): 770–801

    Google Scholar 

  • Monro DM (1975) Complex discrete Fast Fourier Transform. Applied Statistics 24(1): 153–160

    Google Scholar 

  • Monro DM (1976) Real discrete Fast Fourier Transform. Applied Statistics 25(2): 166–172

    Google Scholar 

  • Mudelsee M (1999) On an interesting statistical problem imposed by an ice core. Institute of Mathematics and Statistics, University of Kent, Canterbury, 12pp. [Technical Report UKC/IMS/99/21]

    Google Scholar 

  • Mudelsee M, Börngen M, Tetzlaff G, Grünewald U (2003) No upward trends in the occurrence of extreme floods in central Europe. Nature 425(6954): 166–169. [Corrigendum: Insert in Eq. (1) on the right-hand side a factor h −1 before the sum sign. Results in paper were obtained with correct formula.]

    Google Scholar 

  • Mudelsee M, Börngen M, Tetzlaff G, Grünewald U (2004) Extreme floods in central Europe over the past 500 years: Role of cyclone pathway “Zugstrasse Vb”. Journal of Geophysical Research 109(D23): D23101. [doi:10.1029/2004JD005034; corrigendum: Eq. (5): replace n by n, Eq. (6): replace K(tT (j)) by h −1 K([tT (j)]h −1). Results in paper were obtained with correct formulas.]

    Google Scholar 

  • Mudelsee M, Deutsch M, Börngen M, Tetzlaff G (2006) Trends in flood risk of the river Werra (Germany) over the past 500 years. Hydrological Sciences Journal 51(5): 818–833

    Google Scholar 

  • Mueller M (2003) Damages of the Elbe flood 2002 in Germany—A review. Geophysical Research Abstracts 5: 12992

    Google Scholar 

  • Naveau P, Nogaj M, Ammann C, Yiou P, Cooley D, Jomelli V (2005) Statistical methods for the analysis of climate extremes. Comptes Rendus Geoscience 337(10–11): 1013–1022

    Google Scholar 

  • Nigam S, Guan B (2011) Atlantic tropical cyclones in the twentieth century: Natural variability and secular change in cyclone count. Climate Dynamics 36(11–12): 2279–2293

    Google Scholar 

  • Nogaj M, Yiou P, Parey S, Malek F, Naveau P (2006) Amplitude and frequency of temperature extremes over the North Atlantic region. Geophysical Research Letters 33(10): L10801. [doi:10.1029/2005GL024251]

    Google Scholar 

  • Nyberg J, Malmgren BA, Winter A, Jury MR, Kilbourne KH, Quinn TM (2007) Low Atlantic hurricane activity in the 1970s and 1980s compared to the past 270 years. Nature 447(7145): 698–701

    Google Scholar 

  • Parent E, Bernier J (2003a) Bayesian POT modeling for historical data. Journal of Hydrology 274(1–4): 95–108

    Google Scholar 

  • Parent E, Bernier J (2003b) Encoding prior experts judgments to improve risk analysis of extreme hydrological events via POT modeling. Journal of Hydrology 283(1–4): 1–18

    Google Scholar 

  • Pauli F, Coles S (2001) Penalized likelihood inference in extreme value analyses. Journal of Applied Statistics 28(5): 547–560

    Google Scholar 

  • Pickands III J (1975) Statistical inference using extreme order statistics. The Annals of Statistics 3(1): 119–131

    Google Scholar 

  • Pielke Jr RA, Landsea C, Mayfield M, Laver J, Pasch R (2005) Hurricanes and global warming. Bulletin of the American Meteorological Society 86(11): 1571–1575

    Google Scholar 

  • Pielke Jr RA, Landsea CW (1998) Normalized hurricane damages in the United States: 1925–95. Weather and Forecasting 13(3): 621–631

    Google Scholar 

  • Prescott P, Walden AT (1980) Maximum likelihood estimation of the parameters of the generalized extreme-value distribution. Biometrika 67(3): 723–724

    Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in Fortran 77: The Art of Scientific Computing. Second edition. Cambridge University Press, Cambridge, 933pp

    Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1996) Numerical Recipes in Fortran 90: The Art of Parallel Scientific Computing. Second edition. Cambridge University Press, Cambridge, pp. 935–1486

    Google Scholar 

  • Prueher LM, Rea DK (2001) Volcanic triggering of late Pliocene glaciation: Evidence from the flux of volcanic glass and ice-rafted debris to the North Pacific Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 173(3–4): 215–230

    Google Scholar 

  • Pujol N, Neppel L, Sabatier R (2007) Regional tests for trend detection in maximum precipitation series in the French Mediterranean region. Hydrological Sciences Journal 52(5): 956–973

    Google Scholar 

  • Ramesh NI, Davison AC (2002) Local models for exploratory analysis of hydrological extremes. Journal of Hydrology 256(1–2): 106–119

    Google Scholar 

  • Rao AR, Hamed KH (2000) Flood Frequency Analysis. CRC Press, Boca Raton, FL, 350pp

    Google Scholar 

  • Reis Jr DS, Stedinger JR (2005) Bayesian MCMC flood frequency analysis with historical information. Journal of Hydrology 313(1–2): 97–116

    Google Scholar 

  • Reiss R-D, Thomas M (1997) Statistical Analysis of Extreme Values. Birkhäuser, Basel, 316pp

    Google Scholar 

  • Resnick SI (1987) Extreme Values, Regular Variation, and Point Processes. Springer, New York, 320pp

    Google Scholar 

  • Robbins MW, Lund RB, Gallagher CM, Lu Q (2011) Changepoints in the North Atlantic tropical cyclone record. Journal of the American Statistical Association 106(493): 89–99

    Google Scholar 

  • Robock A (2000) Volcanic eruptions and climate. Reviews of Geophysics 38(2): 191–219

    Google Scholar 

  • Rust HW, Maraun D, Osborn TJ (2009) Modelling seasonality in extreme precipitation: A UK case study. European Physical Journal Special Topics 174(1): 99–111

    Google Scholar 

  • Sankarasubramanian A, Lall U (2003) Flood quantiles in a changing climate: Seasonal forecasts and causal relations. Water Resources Research 39(5): 1134. [doi:10.1029/2002WR001593]

    Google Scholar 

  • Sercl P, Stehlik J (2003) The August 2002 flood in the Czech Republic. Geophysical Research Abstracts 5: 12404

    Google Scholar 

  • Shao N, Lii K-S (2011) Modelling non-homogeneous Poisson processes with almost periodic intensity functions. Journal of the Royal Statistical Society, Series B 73(1): 99–122

    Google Scholar 

  • Sillmann J, Croci-Maspoli M, Kallache M, Katz RW (2011) Extreme cold winter temperatures in Europe under the influence of North Atlantic atmospheric blocking. Journal of Climate 24(22): 5899–5913

    Google Scholar 

  • Silva AT, Portela MM, Naghettini M (2012) Nonstationarities in the occurrence rates of flood events in Portuguese watersheds. Hydrology and Earth System Sciences 16(1): 241–254

    Google Scholar 

  • Silverman BW (1982) Kernel density estimation using the Fast Fourier Transform. Applied Statistics 31(1): 93–99

    Google Scholar 

  • Smith RL (1985) Maximum likelihood estimation in a class of nonregular cases. Biometrika 72(1): 67–90

    Google Scholar 

  • Smith RL (1987) Estimating tails of probability distributions. The Annals of Statistics 15(3): 1174–1207

    Google Scholar 

  • Smith RL (1989) Extreme value analysis of environmental time series: An application to trend detection in ground-level ozone (with discussion). Statistical Science 4(4): 367–393

    Google Scholar 

  • Smith RL (2004) Statistics of extremes, with applications in environment, insurance, and finance. In: Finkenstädt B, Rootzén H (Eds) Extreme Values in Finance, Telecommunications, and the Environment. Chapman and Hall, Boca Raton, FL, pp 1–78

    Google Scholar 

  • Smith RL, Shively TS (1994) A Point Process Approach to Modeling Trends in Tropospheric Ozone Based on Exceedances of a High Threshold. National Institute of Statistical Sciences, Research Triangle Park, NC, 20 pp. [Technical Report Number 16]

    Google Scholar 

  • Smith RL, Shively TS (1995) Point process approach to modeling trends in tropospheric ozone based on exceedances of a high threshold. Atmospheric Environment 29(23): 3489–3499

    Google Scholar 

  • Smith RL, Tawn JA, Coles SG (1997) Markov chain models for threshold exceedances. Biometrika 84(2): 249–268

    Google Scholar 

  • Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller Jr HL, Chen Z (Eds) (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 996pp

    Google Scholar 

  • Solow AR (1991) An exploratory analysis of the occurrence of explosive volcanism in the northern hemisphere, 1851–1985. Journal of the American Statistical Association 86(413): 49–54

    Google Scholar 

  • Strupczewski WG, Kaczmarek Z (2001) Non-stationary approach to at-site flood frequency modelling II. Weighed least squares estimation. Journal of Hydrology 248(1–4): 143–151

    Google Scholar 

  • Strupczewski WG, Singh VP, Feluch W (2001a) Non-stationary approach to at-site flood frequency modelling I. Maximum likelihood estimation. Journal of Hydrology 248(1–4): 123–142

    Google Scholar 

  • Strupczewski WG, Singh VP, Mitosek HT (2001b) Non-stationary approach to at-site flood frequency modelling. III. Flood analysis of Polish rivers. Journal of Hydrology 248(1–4): 152–167

    Google Scholar 

  • Thywissen K (2006) Components of Risk: A Comparative Glossary. United Nations University, Institute for Environment and Human Security, Bonn, 48pp. [Studies of the University: Research, Counsel, Education No. 2]

    Google Scholar 

  • Ulbrich U, Brücher T, Fink AH, Leckebusch GC, Krüger A, Pinto JG (2003a) The central European floods of August 2002: Part 1 – Rainfall periods and flood development. Weather 58(10): 371–377

    Google Scholar 

  • Ulbrich U, Brücher T, Fink AH, Leckebusch GC, Krüger A, Pinto JG (2003b) The central European floods of August 2002: Part 2 – Synoptic causes and considerations with respect to climatic change. Weather 58(11): 434–442

    Google Scholar 

  • Van Montfort MAJ, Witter JV (1985) Testing exponentiality against generalised Pareto distribution. Journal of Hydrology 78(3–4): 305–315

    Google Scholar 

  • Vecchi GA, Knutson TR (2008) On estimates of historical North Atlantic tropical cyclone activity. Journal of Climate 21(14): 3580–3600

    Google Scholar 

  • Villarini G, Vecchi GA, Knutson TR, Smith JA (2011) Is the recorded increase in short-duration North Atlantic tropical storms spurious? Journal of Geophysical Research 116(D10): D10114. [doi:10.1029/2010JD015493]

    Google Scholar 

  • WAFO group (2000) WAFO: A Matlab Toolbox for Analysis of Random Waves and Loads. Lund Institute of Technology, Lund University, Lund, 111pp

    Google Scholar 

  • Wagenbach D (1989) Environmental records in Alpine glaciers. In: Oeschger H, Langway Jr CC (Eds) The Environmental Record in Glaciers and Ice Sheets. Wiley, Chichester, pp 69–83

    Google Scholar 

  • Wagenbach D, Preunkert S, Schäfer J, Jung W, Tomadin L (1996) Northward transport of Saharan dust recorded in a deep Alpine ice core. In: Guerzoni S, Chester R (Eds) The Impact of Desert Dust Across the Mediterranean. Kluwer, Dordrecht, pp 291–300

    Google Scholar 

  • Wang XL, Feng Y, Compo GP, Swail VR, Zwiers FW, Allan RJ, Sardeshmukh PD (2013) Trends and low frequency variability of extra-tropical cyclone activity in the ensemble of twentieth century reanalysis. Climate Dynamics 40(11–12): 2775–2800

    Google Scholar 

  • Weikinn C (2000) Quellentexte zur Witterungsgeschichte Europas von der Zeitwende bis zum Jahr 1850: Hydrographie, Teil 5 (1751–1800). Gebrüder Borntraeger, Berlin, 674pp. [Börngen M, Tetzlaff G (Eds)]

    Google Scholar 

  • Wilson RM (1997) Comment on “Downward trends in the frequency of intense Atlantic hurricanes during the past 5 decades” by C. W. Landsea et al. Geophysical Research Letters 24(17): 2203–2204

    Google Scholar 

  • Worsley KJ (1986) Confidence regions and tests for a change-point in a sequence of exponential family random variables. Biometrika 73(1): 91–104

    Google Scholar 

  • Yee TW, Wild CJ (1996) Vector generalized additive models. Journal of the Royal Statistical Society, Series B 58(3): 481–493

    Google Scholar 

  • Yiou P, Ribereau P, Naveau P, Nogaj M, Brázdil R (2006) Statistical analysis of floods in Bohemia (Czech Republic) since 1825. Hydrological Sciences Journal 51(5): 930–945

    Google Scholar 

  • Zhang X, Zwiers FW, Li G (2004) Monte Carlo experiments on the detection of trends in extreme values. Journal of Climate 17(10): 1945–1952

    Google Scholar 

  • Zielinski GA, Mayewski PA, Meeker LD, Whitlow S, Twickler MS (1996) A 110,000-yr record of explosive volcanism from the GISP2 (Greenland) ice core. Quaternary Research 45(2): 109–118

    Google Scholar 

  • Zielinski GA, Mayewski PA, Meeker LD, Whitlow S, Twickler MS, Morrison M, Meese DA, Gow AJ, Alley RB (1994) Record of volcanism since 7000 B.C. from the GISP2 Greenland ice core and implications for the volcano-climate system. Science 264(5161): 948–952

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mudelsee, M. (2014). Extreme Value Time Series. In: Climate Time Series Analysis. Atmospheric and Oceanographic Sciences Library, vol 51. Springer, Cham. https://doi.org/10.1007/978-3-319-04450-7_6

Download citation

Publish with us

Policies and ethics