Fabricated Nanoparticles: Current Status and Potential Phytotoxic Threats

  • Tushar Yadav
  • Alka A. Mungray
  • Arvind K. MungrayEmail author
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 230)


Nanotechnology is a relatively new technology that involves manipulating matter on an atomic and molecular scale. In general, nanotechnology deals with materials, devices, and other structures having at least one dimension in a size range from 1 to 100 nm (Roco 2003; SCENIHR 2005; Moore 2006). The recent growth in this sector has promised several benefits to society by exploiting the novel properties of nanoparticles. Nanotechnology offers an array of potential applications, and is becoming a key technology for the upcoming generation. Billions of dollars have been invested in nanotechnology research and development across the world. For instance, in the USA, the National Nanotechnology Initiative has invested $3.7 billion, whereas, respectively, the European Union (EU) and Japan have respectively invested $1.2 billion and $750 million dollars in this technology (ANUI 2012). Today, nanotechnology is increasingly occupying a prominent position in human life and in human lifestyle. Moreover, the development of nanomaterials and nanodevices has opened many novel applications in science and technology.


Seed Germination Mitotic Index Root Elongation Mung Bean National Nanotechnology Initiative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anne-Sophie F, Masfaraud JF, Bigorgne E, Nahmani J, Chaurand P, Botta C, Labille J, Rose J, Férard JF, Cotelle S (2011) Environmental impact of sunscreen nanomaterials: ecotoxicity and genotoxicity of altered TiO2 nanocomposites on Vicia faba. Environ Pollut 159:2515–2522Google Scholar
  2. ANUI (2012) Apply nanotech to up industrial, agri output. The Daily Star (Bangladesh).
  3. Asli S, Neumann M (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–584Google Scholar
  4. Aubert T, Burel A, Esnault MA, Cordier S, Grasset F, Cabello-Hurtado F (2012) Root uptake and phytotoxicity of nanosized molybdenum octahedral clusters. J Hazard Mater 219–220: 111–118Google Scholar
  5. Auffan M, Bottero JY, Chaneac C, Rose J (2010) Inorganic manufactured nanoparticles: how their physicochemical properties influence their biological effects in aqueous environments. Nanomedicine 5(6):999–1007Google Scholar
  6. Babu K, Deepa M, Shankar SG, Rai S (2008) Effect of nano-silver on cell division and mitotic chromosomes: a prefatory siren. Internet J Nanotechnol 2(2):2. doi: 10.5580/10eb Google Scholar
  7. Barrena R, Casals E, Colan J, Font X, Sanchez A, Puntes V (2009) Evaluation of the ecotoxicology of model nanoparticles. Chemosphere 75:850–857Google Scholar
  8. Bhatt I, Tripathi BN (2011) Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 82:308–317Google Scholar
  9. Bosetti M, Mass A, Tobin E, Cannas M (2002) Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. Biomaterials 23:887–892Google Scholar
  10. Burklew CE, Ashlock J, Winfrey WB, Zhang B (2012) Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum). PLoS One 7(5):e34783Google Scholar
  11. Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):17–71Google Scholar
  12. Cabiscol E, Tamarit J, Ros J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3:3–8Google Scholar
  13. Canas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and non-functionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–1931Google Scholar
  14. Capala J, Barth RF, Bendayam M, Lauzon M, Adams DM, Soloway AH, Fenstermaker RA, Carlsson J (1996) Boronated epidermal growth factor as a potential targeting agent for boron neutron capture therapy of brain tumors. Bioconjug Chem 7:7–15Google Scholar
  15. Cheng XK, Kan AT, Tomsom MB (2004) Naphthalene adsorption and desorption from aqueous C-60 fullerene. J Chem Eng Data 49:675–683Google Scholar
  16. Cho M, Chung H, Choi W, Yoon J (2005) Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Appl Environ Microbiol 71(1):270–275Google Scholar
  17. Corma A, Atienzar P, Garcia H, Chane-Ching JY (2004) Hierarchically mesostructured doped CeO2 with potential form solar-cell use. Nat Mater 3:394–397Google Scholar
  18. Database (2013) Nanowerk Nanomaterial Database [Internet]. Available from:
  19. Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822–828Google Scholar
  20. Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant 134:151–160Google Scholar
  21. El Nemr A, Abd-Allah AMA (2003) Contamination of polycyclic aromatic hydrocarbons (PAHs) in microlayer and subsurface waters along Alexandria coast, Egypt. Chemosphere 52:1711–1716Google Scholar
  22. Farre M, Sanchis J, Barcelo D (2011) Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. Trends Anal Chem 30(3):517–527Google Scholar
  23. Fernandez V, Eichert T (2009) Uptake of hydrophilic solutes through plant leaves: current state of knowledge and perspectives of foliar fertilization. Crit Rev Plant Sci 28:36–68Google Scholar
  24. Foraker AB, Walczak RJ, Cohen MH (2003) Microfabricated porous silicon particles enhance paracellular delivery of insulin across intestinal Caco-2 cell monolayers. Pharm Res 20:110–116Google Scholar
  25. Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41(24):8484–8490Google Scholar
  26. García A, Espinosa R, Delgado L, Casals E, González E, Puntes V, Barata C, Font X, Sánchez A (2011) Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests. Desalination 269:136–141Google Scholar
  27. Ghosh M, Bandyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide TiO2 nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere 81:1253–1262Google Scholar
  28. Giorgetti L, Ruffini Castiglione M, Bernerbini M, Geri C (2011) Nanoparticles effects on growth and differentiation in cell culture of carrot—Daucus carota L.. Agrochimica LV:45–53Google Scholar
  29. Gotovac S, Honda H, Hattori Y, Takahashi K, Kanoh H, Kaneko K (2007) Effect of nanoscale curvature of single-walled carbon nanotubes on adsorption of polycyclic aromatic hydrocarbons. Nano Lett 7:583–587Google Scholar
  30. Gupta VK, Rastogi A (2008) Biosorption of lead from aqueous solution by green algae Spirogyra species: kinetic and equilibrium studies. J Hazard Mater 152(1):407–414Google Scholar
  31. Gupta SM, Tripathi M (2011) A review of TiO2 nanoparticles. Chin Sci Bull 56:1639–1657Google Scholar
  32. Haverkamp RG, Marshall AT (2009) The mechanism of metal nanoparticle formation in plants: limits on accumulation. J Nanopart Res 11:1453–1463Google Scholar
  33. Heinlaan M, Ivask A, Blinova I, Dubourguier H, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316Google Scholar
  34. Hoshino K, Gopal A, Glaz M, Bout DV, Zhang XJ (2012) Nanoscale fluorescence imaging with quantum dot near-field electroluminescence. Appl Phys Lett 101(2–3):043118Google Scholar
  35. Howarth M, Liu W, Puthenveetil S, Zheng Y, Marshall LF, Schmidt MM, Wittrup KD, Bawendi MG, Ting AY (2008) Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat Methods 5(5):397–399Google Scholar
  36. Hu X, Liu J, Mayer P, Jiang G (2008) Impacts of some environmentally relevant parameters on the sorption of polycyclic hydrocarbons to aqueous suspensions of fullerene. Environ Toxicol Chem 27(9):1868–1874Google Scholar
  37. Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1(5):482–501Google Scholar
  38. Jia G, Wang HF, Yan L, Wang X, Pei RJ, Yan T, Zhao YL, Guo XB (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multiwall nanotube, and fullerene. Environ Sci Technol 39:1378–1383Google Scholar
  39. Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227Google Scholar
  40. Khus M, Gernjak W, Ibanez PF, Rodriguez SM, Galvez JB, Icli S (2006) A comparative study of supported TiO2 as photocatalyst in water decontamination at solar pilot plant scale. J Sol Energy 128:331–337Google Scholar
  41. Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851Google Scholar
  42. Klajnert B, Bryszewska M (2001) Dendrimers: properties and applications. Acta Biochim Pol 48(1):199–208Google Scholar
  43. Konstantatos G, Sargent EH (2009) Solution-processed quantum dot photodetectors. Proc IEEE 97(10):1666–1683Google Scholar
  44. Kosynkin VD, Arzgatkina AA, Ivanov EN, Chtoutsa MG, Grabko AI, Kardapolov AV, Sysina NA (2000) The study of process production of polishing powder based on cerium dioxide. J Alloys Compd 303–304:421–425Google Scholar
  45. Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012) Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochem 47:651–658Google Scholar
  46. Kukowska-Latallo JF, Raczka E, Quintana A, Chen CL, Rymaszewski M, Baker JR (2000) Intravascular and endobronchial DNA delivery to murine lung tissue using a novel, nonviral vector. Hum Gene Ther 11:1385–1395Google Scholar
  47. Kumar V, Kumari A, Guleria P, Yadav SK (2012) Evaluating the toxicity of selected types of nanochemicals. Rev Environ Contamin Toxicol 215:39–121Google Scholar
  48. Kumari M, Mukherjee A, Chandrasekaran N (2009) Geno-toxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243–5245Google Scholar
  49. Larue C, Khodja H, Herlin-Boime N, Brisset F, Flank AM, Fayard B, Chaillou S, Carriere M (2011) Investigation of titanium dioxide nanoparticles toxicity and uptake by plants. J Phys Conf Ser 304(1):012057Google Scholar
  50. Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank AM, Brisset F, Carriere M (2012) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ 431:197–208Google Scholar
  51. Lee SH, Richards RJ (2004) Montserrat volcanic ash induces lymph node granuloma and delayed lung inflammation. Toxicology 195:155–165Google Scholar
  52. Lee W, An Y, Yoon H, Kweon H (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant uptake for water insoluble nanoparticles. Environ Toxicol Chem 27(9):1915–1921Google Scholar
  53. Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 3:669–675Google Scholar
  54. Lee S, Kim S, Kim S, Lee I (2013) Assessment of phytotoxicity of ZnO NPs on a medicinal plant, Fagopyrum esculentum. Environ Sci Pollut Res Int 20(2):848–854Google Scholar
  55. Limbach LK, Bereiter R, Muller E, Krebs R, Galli R, Stark WJ (2008) Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearing efficiency. Environ Sci Technol 42:5828–5833Google Scholar
  56. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250Google Scholar
  57. Lin D, Xing B (2008a) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585Google Scholar
  58. Lin DH, Xing B (2008b) Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups. Environ Sci Technol 42:7254–7259Google Scholar
  59. Lin C, Fugetsu B, Su Y, Watari F (2009a) Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells. J Hazard Mater 170:578–583Google Scholar
  60. Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009b) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128–1132Google Scholar
  61. Livingston FE, Helvajian H (2005) Variable UV laser exposure processing of photosensitive glass–ceramics: maskless micro to meso-scale structure fabrication. Appl Phys A 81:1569–1581Google Scholar
  62. López-Moreno ML, de la Rosa G, Hernández-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2010a) XAS Corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58(6):3689–3693Google Scholar
  63. Lopez-Moreno ML, De La Rosa G, Hernandez-Viezcas JA, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010b) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320Google Scholar
  64. Ma X, Lee JG, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061Google Scholar
  65. Mahajan P, Dhoke SK, Khanna AS (2011) Effect of nano-ZnO particle suspension on growth of Mung (Vigna radiata) and Gram (Cicer arietinum) seedlings using plant agar method. J Nanotechnol 2011:1–7Google Scholar
  66. Majumdar H, Ahmed GU (2011) Phytotoxicity effect of silver nanoparticles on Oryza sativa. Int J ChemTech Res 3(3):1494–1500Google Scholar
  67. Moaveni P, Karimi K, Zare Valojerdi M (2011) The nanoparticles in plants: review paper. J Nanostruct Chem 2(1):59–78Google Scholar
  68. Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976Google Scholar
  69. Murr LE, Esquivel EV, Bang JJ, de la Rosa G, Gardea-Torresdey JL (2004) Chemistry and nanoparticulate compositions of a 10,000 year-old ice core melt water. Water Resour 38:4282–4296Google Scholar
  70. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163Google Scholar
  71. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008a) Environmental behaviour and ecotoxicology of engineered nanoparticles to algae, plant and fungi. Environ Sci Technol 17:372–386Google Scholar
  72. Navarro E, Piccipetra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008b) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964Google Scholar
  73. Navarro DA, Bisson MA, Agaa DS (2012) Investigating uptake of water-dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants. J Hazard Mater 211–212:427–435Google Scholar
  74. Novack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22Google Scholar
  75. O’Farrell N, Houlton A, Horrocks BR (2006) Silicon nanoparticles: applications in cell biology and medicine. Int J Nanomed 1(4):451–472Google Scholar
  76. Oleszczuk P, Pan B, Xing B (2009) Adsorption and desorption of oxytetracycline and carbamazepine by multiwalled carbon nanotubes. Environ Sci Technol 43:9167–9173Google Scholar
  77. Oleszczuk P, Jósko I, Xing B (2011) The toxicity to plants of the sewage sludges containing multiwalled carbon nanotubes. J Hazard Mater 186:436–442Google Scholar
  78. Ovecka M, Lang I, Baluska F, Ismail A, Illes P, Lichtscheidl IK (2005) Endocytosis and vesicle trafficking during tip growth of root hairs. Protoplasma 226(1–2):39–54Google Scholar
  79. Pan B, Xing B (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42:9005–9013Google Scholar
  80. Patlolla AK, Berry A, May L, Tchounwou PB (2012) Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles. Int J Environ Res Publ Health 9:1649–1662Google Scholar
  81. Pavel A, Creanga DE (2005) Chromosomal aberrations in plants under magnetic fluid influence. J Magn Magn Mater 289:469–472Google Scholar
  82. Pavel A, Trifan M, Bara II, Creanga DE, Cotae C (1999) Accumulation dynamics and some cytogenetical tests at Chelidonium majus and Papaver somniferum callus under the magnetic liquid effect. J Magn Magn Mater 201(1–3):443–445Google Scholar
  83. Peng G, Hakim M, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, Tisch U, Haick H (2010) Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br J Cancer 103(4):542–551Google Scholar
  84. Perrault SD, Chan WCW (2010) In vivo assembly of nanoparticle components to improve targeted cancer imaging. Proc Natl Acad Sci U S A 107:11194–11199Google Scholar
  85. Pulickel MA, Zhou OZ (2001) Applications of carbon nanotubes. Top Appl Phys 80:391–425Google Scholar
  86. Racuciu M, Creanga DE (2007) Cytogenetic changes induced by aqueous ferrofluids in agricultural plants. J Magn Magn Mater 311(1):288–291Google Scholar
  87. Reid BJ, Jones KC, Semple KT (2000) Bioavailability of persistent organic pollutants in soils and sediments—a perspective on mechanisms, consequences and assessment. Environ Pollut 108:103–112Google Scholar
  88. Remedios C, Rosario F, Bastos V (2012) Environmental nanoparticles interactions with plants: morphological, physiological, and genotoxic aspects. J Bot 2012:1–8Google Scholar
  89. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485–3498Google Scholar
  90. Rietmeijer FJM, Mackinnon IDR (1997) Bismuth oxide nanoparticles in the stratosphere. J Geophys Res E 102:6621–6627Google Scholar
  91. Roco MC (2003) Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol 14:337–346Google Scholar
  92. Roy R, Zanini D, Meunier SJ, Romanowska A (1993) Solid-phase synthesis of dendritic sialoside inhibitors of influenza A virus haemagglutinin. J Chem Soc Chem Commun 1869–1872Google Scholar
  93. Royal Society (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. Report by the Royal Society and the Royal Academy of Engineering.
  94. Rubasinghe G, Elzey S, Baltrusaitis J, Jayaweera PM, Grassian VH (2010) Reactions on atmospheric dust particles: surface photochemistry and size-dependent nanoscale redox chemistry. J Phys Chem Lett 1:1729–1737Google Scholar
  95. Ruffini Castiglione M, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62(2):161–165Google Scholar
  96. Ruffini Castiglione M, Geri C, Giorgetti L, Cremonini R (2011) The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L..J Nanopart Res 13:2443–2449Google Scholar
  97. Sabo-Attwood T, Unrine JM, Stone JW, Murphy CJ, Ghoshroy S, Blom D, Bertsch PM, Newman LA (2012) Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology 6(4):353–360Google Scholar
  98. SCENIHR (Scientific Committee on Emerging and Newly Identified Health Risks) (2005) The appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies (SCENIHR report 002/05) (European Commission: Scientific Committee on Emerging and Newly Identified Health Risks).
  99. Schmid K, Riediker M (2008) Use of nanoparticles in Swiss industry: a targeted survey. Environ Sci Technol 42(7):2253–2260Google Scholar
  100. Shahmoradi B, Ibrahim IA, Sakamoto N, Ananda S, Somashekar R, Guru Row TN, Byrappa K (2010) Photocatalytic treatment of municipal wastewater using modified neodymium doped TiO2 hybrid nanoparticles. J Environ Sci Health A 45:1248–1255Google Scholar
  101. Shen CX, Zhang QF, Li J, Bi FC, Yao N (2010) Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot 97:1–8Google Scholar
  102. Smijs TG, Pavel S (2011) Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol Sci Appl 4:95–112Google Scholar
  103. Smirnova EA, Gusev AA, Zaitseva ON, Lazareva EM, Onishchenko GE, Kuznetsova EV, Tkachev AG, Feofanov AV, Kirpichnikov MP (2011) Multi-walled carbon nanotubes penetrate into plant cells and affect the growth of Onobrychis arenaria seedlings. Acta Nat 3(1):99–106Google Scholar
  104. Smita S, Gupta SK, Bartonova A, Dusinska M, Gutleb AC, Rahman Q (2012) Nanoparticles in the environment: assessment using the causal diagram approach. Environ Health 11(Suppl 1):S13, 10.1186/1476-069X-11-S1-S13Google Scholar
  105. Somasundaran P, Fang X, Ponnurangam S, Li B (2010) Nanoparticles: characteristics, mechanisms and modulation of biotoxicity. KONA Powder Part J 28:38–49Google Scholar
  106. Srividya K, Mohanty K (2009) Biosorption of hexavalent chromium from aqueous solutions by Catla catla scale: equilibrium and kinetics studies. Chem Eng J 155:666–673Google Scholar
  107. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479Google Scholar
  108. Tan XM, Fugetsu B (2007) Multi-walled carbon nanotubes interact with cultured rice cells: evidence of a self-defense response. J Biomed Nanotechnol 3:285–288Google Scholar
  109. Tan XM, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47:3479–3487Google Scholar
  110. Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH (2009) Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69:8784–8789Google Scholar
  111. Twyman LJ, Beezer AE, Esfand R, Hardy MJ, Mitchell JC (1999) The synthesis of water soluble dendrimers, and their application as possible drug delivery systems. Tetrahedron Lett 40:1743–1746Google Scholar
  112. Unfried K, Albrecht C, Klotz LO, Mikecz A, Grether-Beck S, Schin RPF (2007) Cellular responses to nanoparticles: target structures and mechanisms. Nanotoxicology 1(1):52–71Google Scholar
  113. USEPA (2007) Nanotechnology white paper. Document Number EPA 100/B-07001.
  114. Uzu G, Sobanska S, Sarret G, Munoz M, Dumat C (2010) Foliar lead uptake by lettuce exposed to atmospheric pollution. Environ Sci Technol 44:1036–1042Google Scholar
  115. Verma HC, Upadhyay C, Tripathi A, Tripathi RP, Bhandari N (2002) Thermal decomposition pattern and particle size estimation of iron minerals associated with the cretaceous-tertiary boundary at Gubbio. Meteorit Planet Sci 37:901–909Google Scholar
  116. Vochita G, Creanga D, Focanici-Ciurlica EL (2012) Magnetic nanoparticle genetic impact on root tip cells of sunflower seedlings. Water Air Soil Pollut 223:2541–2549Google Scholar
  117. Wang S, Kurepa J, Smalle JA (2011) Ultra-small TiO2 nanoparticles disrupt microtubular networks in Arabidopsis thaliana. Plant Cell Environ 34(5):811–820Google Scholar
  118. Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012) Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46(8):4434–4441Google Scholar
  119. Wigginton NS, Haus KL, Hochella MF (2007) Aquatic environmental nanoparticles. J Environ Monit 9:1306–1316Google Scholar
  120. Wu SG, Huang L, Head J, Chen DR, Kong IC, Tang YJ (2012) Phytotoxicity of metal oxide nanoparticles is related to both dissolved metal ions and adsorption of particles on seed surfaces. J Pet Environ Biotechnol 3(4):126Google Scholar
  121. Yang L, Watts J (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132Google Scholar
  122. Yang K, Zhu L, Xing B (2006) Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ Sci Technol 40(6):1855–1861Google Scholar
  123. Yeo SY, Lee HJ, Jeong SH (2003) Preparation of nanocomposite fibers for permanent antibacterial effect. J Mater Sci 38:2143–2147Google Scholar
  124. Yu-Nam Y, Lead R (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400:396–414Google Scholar
  125. Zhao XU, Liz W, Chen Y, Ahi LY, Zhu YF (2007) Solid-phase photocatalytic degradation of polyethylene plastic under UV and solar light irradiation. J Mol Catal A Chem 268:101–106Google Scholar
  126. Zhao L, Peralta-Videa JR, Varela-Ramirez A, Castillo-Michel H, Li C, Zhang J, Aguilera RJ, Keller AA, Gardea-Torresdey JL (2012) Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: insight into the uptake mechanism. J Hazard Mater 225–226:131–138Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tushar Yadav
    • 1
  • Alka A. Mungray
    • 1
  • Arvind K. Mungray
    • 1
    Email author
  1. 1.Chemical Engineering DepartmentSardar Vallabhbhai National Institute of TechnologySuratIndia

Personalised recommendations